精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
-ex+a
ex+1
是奇函数.
(1)求a的值,并判断f(x)在R上的单调性(不需证明);
(2)若对任意的t∈[-1,2],不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:(1)由奇函数的定义得f(1)=-f(-1),代入解析式求出a的值,结合指数函数的单调性,可判断f(x)在R上的单调性;
(2)根据奇函数的定义将不等式化为:f(t2-2t)<f(-2t2+k),再分离函数解析式,利用指数函数的复合函数的单调性判断出此函数的单调性,再列出关于x的不等式,由题意转化为:3t2-2t-k>0恒成立,利用二次函数的性质列出等价不等式求解.
解答: 解:(1)∵定义域为R的奇函数图象必过原点,
故f(0)=
-1+a
1+1
=0,
解得:a=1,
此时f(x)=
-ex+1
ex+1
在R上为减函数,
(2)∵f(t2-2t)+f(2t2-k)<0,
∴f(t2-2t)<-f(2t2-k),
∵f(x)为奇函数,
∴f(t2-2t)<f(-2t2+k)
由(1)得,f(x)在定义域内为单调递减函数,
∴t2-2t>-2t2+k,即3t2-2t-k>0恒成立,
∴△=4+12k<0,解得k<-
1
3

故k的取值范围是(-∞,-
1
3
).
点评:本题主要考查了奇函数的定义的灵活应用,以及分离常数法,复合函数和指数函数单调性的应用,二次函数的性质的应用,较综合,但难度不大,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+sin(x-
π
3
).
(Ⅰ)求f(x)的周期;
(2)求f(x)的单调递增区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“菱形的四条边相等”的否定是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,若角α的始边为x轴的非负半轴,终边为射线l:y=2
2
x(x≥0),点P,Q分别是角α始边、终边上的动点,且PQ=4.
(1)求sin(α+
π
6
)
的值;
(2)求△POQ面积最大值及点P,Q的坐标;
(3)求△POQ周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为2的正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点,试用向量的方法:
(1)求证:D1F⊥平面ADE;
(2)求CB1与平面ADE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是R上的函数,对于任意和实数a,b,都有f(ab)=af(b)+bf(a),且f(2)=1.
(1)求f(1),f(
1
2
)的值;
(2)令bn=f(2-n),求证:{2nbn}为等差数列;
(3)求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=|3x-1|,c<b<a且f(c)>f(a)>f(b),在关系式①3c>3b②3b>3a③3c+3a>2④3c+3a<2中一定成立的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:2+2=5; 命题q:3>2,则下列各项中,正确的是(  )
A、p或q为真命题,q为假命题
B、p且q为假命题,¬q为真命题
C、p且q为假命题,¬q为假命题
D、p且q为假命题,p或q为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的公比q=2,前n项和为Sn,则
S5
a4
=(  )
A、2
B、4
C、
31
8
D、
31
4

查看答案和解析>>

同步练习册答案