精英家教网 > 高中数学 > 题目详情
直线x+my+1=0与不等式组
x+y-3≥0
2x-y≥0
x-2≤0
表示的平面区域有公共点,则实数m的取值范围是(  )
A、[
1
3
4
3
]
B、[-
4
3
,-
1
3
]
C、[
3
4
,3]
D、[-3,-
3
4
]
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.
解答: 解:即直线x+my+1=0过定点D(-1,0)
作出不等式组对应的平面区域如图:其中A(2,4),B(2,1),
要使直线和平面区域有公共点,则直线x+my+1=0的斜率k>0,
即k=-
1
m
,且满足kAD≤k≤kDB
此时AD的斜率kAD=
4
2-(-1)
=
4
3

BD的斜率kDB=
1-0
2-(-1)
=
1
3

1
3
≤k≤
4
3

1
3
-
1
m
4
3

解得-3≤m≤-
3
4

故选:D
点评:本题主要考查线性规划以及斜率的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是R上的减函数,设a=f(log23),b=f(log 
1
2
3),c=f(3-0.5),则将a,b,c从小到大排列为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x,x>0
2x+1,x≤0
,若f(a)+f(1)=0,则实数a的值为(  )
A、-3B、-2C、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,猜想T=sinA+sinB+sinC的最大值,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有若干个形状大小相同的小球,其中2个标有数字1,3个标有数字2,n个标有数字3,取出一球记下所标数字后放回,再取一球记下所标数字,两次取球所标数字不相同的概率与两次取球所标数字相同的概率之差为
5
16

(1)求n的值;
(2)记两次取球所标数字之和为X,求X的分布列与均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg(x-1)的定义域为(  )
A、(0,+∞)
B、(-∞,0)
C、(1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M(点A对应实数0,点B对应实数1),如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),在图形变化过程中,图①中线段AM的长度对应于图③中的弧ADM的长度,如图③,图③中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.
给出下列命题:①f(
1
4
)=1;
②f(
1
2
)=0;
③f(x)是奇函数;
④f(x)在定义域上单调递增,
则所有真命题的序号是(  )
A、①②B、②③C、①④D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+β)=
3
5
,cos(α-β)=
1
10
,求[sinα+cos(π+α)]•[sinβ-sin(
π
2
+β)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a<b<0,则下列不等式不成立是(  )
A、
1
a-b
1
a
B、
1
a
1
b
C、|a|>|b|
D、a2>b2

查看答案和解析>>

同步练习册答案