精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:①f[f(x)]=x也一定没有实数根;②若a<0,则必存在实数x0,使f[f(x)]>x0;③若a>0,则不等式f[f(x)]>x对一切实数x都成立;④若a+b+c=0,则不等式f[f(x)]<x对一切实数x都成立;
以上说法中正确的是:
①③④
①③④
.(把你认为正确的命题的所有序号都填上).
分析:由函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,可知:
①f[f(x)]=x也一定没有实数根;正确;
②若a<0,函数f(x)=ax2+bx+c(a≠0)的图象必在y=x的下方,必有f[f(x0)]<x0,故②错误;
同理可分析③正确;
由a+b+c=0,可得f(1)=0,结合题意可知④正确.
解答:解:由函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,可知:
①f[f(x)]=x也一定没有实数根;正确;
②若a<0,函数f(x)=ax2+bx+c(a≠0)的图象必在y=x的下方,必有f[f(x0)]<x0,故②错误;
③若a>0,函数f(x)=ax2+bx+c(a≠0)的图象必在y=x的上方,不等式f[f(x)]>x对一切实数x都成立;正确;
④同理可分析③正确;
由a+b+c=0,可得f(1)=0,结合题意可知a<0,函数f(x)=ax2+bx+c(a≠0)的图象必在y=x的下方,④正确.
故答案为:①③④.
点评:本题考查二次函数的性质,难点在于对函数的图象与性质的正确理解与应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案