精英家教网 > 高中数学 > 题目详情
17.若cosθ=$\frac{2}{3}$,θ为第四象限角,则cos(θ+$\frac{π}{4}$)的值为(  )
A.$\frac{\sqrt{2}+\sqrt{10}}{6}$B.$\frac{2\sqrt{2}+\sqrt{10}}{6}$C.$\frac{\sqrt{2}-\sqrt{10}}{6}$D.$\frac{2\sqrt{2}-\sqrt{10}}{6}$

分析 可先由同角三角函数的基本关系求出θ的正弦,然后由余弦的和角公式求出的值即可得到答案

解答 解:cosθ=$\frac{2}{3}$,θ为第四象限角,得sinθ=-$\sqrt{1-\frac{4}{9}}$=-$\frac{\sqrt{5}}{3}$,
∴cos(θ+$\frac{π}{4}$)=cosθcos$\frac{π}{4}$-sinθsin$\frac{π}{4}$=$\frac{2}{3}$×$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{5}}{3}$×$\frac{\sqrt{2}}{2}$=$\frac{2\sqrt{2}+\sqrt{10}}{6}$.
故选:B

点评 本题考点是三角函数的恒等变换及化简求值,考查了同角三角函数的基本关系,余弦的和角公式,解题的关键是熟练掌握三角函数的公式,利用公式求值,三角函数公式较多,变形灵活,做题时要注意总结规律,找到最佳的变形方法进行求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.三棱锥P-ABC中,AB=AC=PB=PC=5,PA=BC若该三棱锥的四个顶点在同一个球面上,且球的表面积为34π,则棱PA的长为(  )
A.3B.$2\sqrt{3}$C.$3\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.根据如下的样本数据:
广告费x/万元4235
销售额y/万元49263954
得到的回归方程为y=bx+a,其中b为9.4,据此模型预报广告费为6万元时的销售额为(  )
A.63.6万元B.65.5万元C.67.7万元D.72.0万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径为20mm,中间有边长为5mm的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是(  )
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f'(x)是函数y=f(x)的导数,f''(x)是f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心,若$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$,请根据这一发现,
(1)求三次函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$的对称中心;
(2)计算$f({\frac{1}{2017}})+f({\frac{2}{2017}})+f({\frac{3}{2017}})+…+f({\frac{2016}{2017}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.随着互联网经济逐步被人们接受,网上购物的人群越来越多,网上交易额也逐年增加,某地一建设银行连续五年的网银交易额统计表,如表所示:
年份x20122013201420152016
网上交易额y(亿元)567810
经研究发现,年份与网银交易额之间呈线性相关关系,为了计算的方便,工作人员将上表的数据进行了处理,t=x-2011,z=y-5,得到如表:
时间代号t12345
z01235
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年年底,该地网银交易额可达多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$.
(1)若a=2,求证:f(x)在(0,+∞)上为增函数;
(2)若不等式f(x)≥0的解集为[1,+∞),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥S-ABCD中,底面ABCD是边长为4的正方形,平面SAD⊥平面SCD,$SA=SD=2\sqrt{2}$.
(1)求证:平面SAD⊥平面ABCD;
(2)E为线段DS上一点,若二面角S-BC-E的平面角与二面角D-BC-E的平面角大小相等,求SE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)求函数f(x)在点(1,f(1))处的切线的斜率;
(2)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(3)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.

查看答案和解析>>

同步练习册答案