设=(1,),=(0,1),O为坐标原点,动点P(x,y)满足0≤·≤1,0≤·≤1,则z=y-x的最大值是
A.
B.1
C.-1
D.-2
科目:高中数学 来源:2015届广东省高一暑假作业(六)必修4数学试卷(解析版) 题型:选择题
已知||=1,||=,·=0,点C在∠AOB内,且∠AOC=30°.设=m+n (m、n∈R),则等于( )
A. B.3 C. D.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山西省高三2月月考文科数学试卷 题型:解答题
(12分)设向量=(1,cos2θ),=(2,1),=(4sinθ,1),=(sinθ,1),其中θ∈(0,).
(1)求·-·的取值范围;
(2)若函数f(x)=|x-1|,比较f(·)与f(·)的大小.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江西省南昌市高三第一次月考理科数学卷 题型:选择题
已知| |=1,||=,·=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m,n∈R),则等于 ( )
A. B.3 C. D.
查看答案和解析>>
科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题
已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com