精英家教网 > 高中数学 > 题目详情
2.如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.
(3)在DE上是否存在一点P,使直线BP和平面BCE所成的角为30°.

分析 (1)取CE中点M,连结MF,BM,证明四边形ABMF是平行四边形,
(2)由线面垂直的性质得四边形ABMF是矩形,证明BM⊥平面CDE;
(3)假设存在点P,构造线面角,根据线段的关系列方程解出EP.

解答 证明:(1)取CE中点M,连结MF,BM.∴MF是△CDE的中位线,∴MF∥DE,MF=$\frac{1}{2}DE$,
∵DE∥AB,DE=2AB,∴AB∥MF,AB=MF,∴四边形ABMF是平行四边形,
∴AF∥BM,∵AF?平面BCE,BM?平面BCE,
∴AF∥平面BCE.
(2)∵AB⊥平面ACD,AF?平面ACD,
∴AB⊥AF,∴四边形ABMF是矩形,∴BM⊥MF.
∵△ACD是正三角形,F是CD中点,∴CD⊥AF.
∵AB∥MF,AB⊥平面ACD,
∴MF⊥平面ACD.∵CD?平面ACD,∴MF⊥CD.
∵AF∩MF=F,AF?平面ABMF,MF?平面ABMF,
∴CD⊥平面ABMF,∵BM?平面ABMF,
∴CD⊥BM,∵MF∩CD=F,MF?平面CDE,CD?平面CDE,
∴BM⊥平面CDE,∵BM?平面BCE,
∴平面BCE⊥平面CDE.
(3)假设DE上存在一点P,使直线BP和平面BCE所成的角为30°.
连结DM,过P作PN⊥CE,垂足为N,连结BN.则∠PBN=30°.
设AB=1,则DE=AC=CD=AD=2,∴BE=BC=$\sqrt{5}$,CE=2$\sqrt{2}$,DM=CM=$\sqrt{2}$,cos∠BEP=$\frac{DE-AB}{BE}$=$\frac{\sqrt{5}}{5}$.
设PN=x,则PE=$\sqrt{2}$x,PB=2x,
在△BPE中,由余弦定理得:PB2=BE2+EP2-2BE•EP•cos∠BEP.
∴4x2=5+2x2-2$\sqrt{2}$x,解得x=$\sqrt{3}-\frac{\sqrt{2}}{2}$<$\sqrt{2}$,符合题意.
∴DE上存在一点P,使直线BP和平面BCE所成的角为30°.

点评 本题考查了线面平行,面面垂直的判定与性质,线面角的定义,使用假设法是解决存在性问题的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且${S_n}-1=3({a_n}-1),n∈{Z^+}$.
(1)求出数列{an}的通项公式;
(2)设数列{bn}满足${a_{n-1}}={(\frac{3}{2})^{{a_n}•{b_n}}}$,若bn≤t对于任意正整数n都成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法中正确的个数是(  )
①最大的7进制三位数是999(7)
②110110110(2)=5036(9)
③秦九韶算法的优点是减少了乘法运算的次数;
④更相减损术是计算最大公约数的方法;
⑤用欧几里得算法计算54和78最大公约数需进行3次除法.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,已知a6+a9+a13+a16=20,则S21等于(  )
A.100B.105C.200D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.点A(sin1,cos1)在直角坐标平面上位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.y=cos($\frac{x}{2}$-$\frac{π}{6}$)(-π≤x≤π)的值域为(  )
A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[-1,1]C.[-$\frac{1}{2}$,1]D.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.经过P(-2,0)且平行于$\overrightarrow{a}$=(0,3)的直线方程为3x-y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}为等差数列,且a1=8,a4=2
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)满足当∈[2k-1,2k+1)(k∈Z)时f(x)=(x-2k)2,若y=f(x)与g(x)=logax图象上关于y轴对称的点有3对,则a的取值范围是(  )
A.(0,2)B.(1,3)C.(2,4)D.(3,5)

查看答案和解析>>

同步练习册答案