【题目】某超市在2017年五一正式开业,开业期间举行开业大酬宾活动,规定:一次购买总额在区间内者可以参与一次抽奖,根据统计发现参与一次抽奖的顾客每次购买金额分布情况如下:
(1)求参与一次抽奖的顾客购买金额的平均数与中位数(同一组中的数据用该组区间的中点值作代表,结果保留到整数);
(2)若根据超市的经营规律,购买金额与平均利润有以下四组数据:
试根据所给数据,建立关于的线性回归方程,并根据(1)中计算的结果估计超市对每位顾客所得的利润.
参考公式: , .
【答案】(1)见解析.(2).20.45(元).
【解析】【试题分析】(1)计算出每组的频率,用每组中点值乘以频率然后相加可得到平均数的估计值.中位数是使得左右两边频率为的位置,先确定在第三组,然后利用小长方形的面积计算出中位数的位置.(2)利用回归直线方程公式,代入数据计算出回归直线方程.
【试题解析】
(1)由所给频率分布直方图可知,这5组数据的频率分别为:0.1,0.2,0.3,0.25,0.15,故这组数据的平均数为:
;
∵, .
∴这组数据的中位数为: .
(2)由所给数据可得: , ,
, ,∴回归直线方程为: .
由此可以估计,把代入可得每位顾客贡献给超市的平均利润为:
(元).
科目:高中数学 来源: 题型:
【题目】已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为|OB|.
(1)求椭圆C的方程;
(2)如图,若椭圆,椭圆,则称椭圆C2是椭圆C1的λ倍相似椭圆.已知C2是椭圆C的3倍相似椭圆,若椭圆C的任意一条切线l交椭圆C2于两点M、N,试求弦长|MN|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象与轴正半轴交点的横坐标依次构成一个公差为的等差数列,把函数的图象沿轴向右平移个单位,得到函数的图象,则下列叙述不正确的是( )
A. 的图象关于点对称 B. 的图象关于直线对称
C. 在上是增函数 D. 是奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为和,离心率是,直线过点交椭圆于, 两点,当直线过点时, 的周长为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当直线绕点运动时,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直角坐标系中动点,参数,在以原点为极点、轴正半轴为极轴所建立的极坐标系中,动点在曲线: 上.
(1)求点的轨迹的普通方程和曲线的直角坐标方程;
(2)若动点的轨迹和曲线有两个公共点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )
(参考数据: )
A. 12 B. 24 C. 48 D. 96
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com