【题目】笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀,公司按照某种质量标准值x给宣纸确定质量等级,如表所示:
x | (48,52] | (44,48]∪(52,56] | (0,44]∪(56,100] |
质量等级 | 正牌 | 副牌 | 废品 |
公司在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.
(Ⅰ)按正牌、副牌、废品进行分层抽样,从这一刀(100张)纸中抽出一个容量为5的样本,再从这个样本中随机抽出两张,求其中无废品的概率;
(Ⅱ)试估计该公司生产宣纸的年利润(单位:万元).
【答案】(Ⅰ);(Ⅱ)400万元
【解析】
(I)利用列举法,结合古典概型概率计算公式,计算出所求概率.
(II)根据频率分布直方图求得一刀宣纸的利润,由此估计出年利润.
(Ⅰ)按正牌、副牌、废品进行分层抽样,从这一刀(100张)约中抽出一个容量为5的样本,
设抽出的2张正牌为A,B,2张副牌为a,b,1张废品为t,从中任取两张,基本事件有:
AB,Aa,Ab,At,Ba,Bb,Bt,ab,at,bt,共10种,
其中无废品包含的基本事件有:AB,Aa,Ab,Ba,Bb,ab,共6种,∴其中无废品的概率p.
(Ⅱ)由频率分布直方图得:一刀(100张)宣纸有正牌宣纸100×0.1×4=40张,
有副牌宣纸100×0.05×4×2=40张,有废品100×0.025×4×2=20张,
∴该公司一刀宣纸的利润为40×10+40×5+20×(﹣10)=400元,
∴估计该公司生产宣纸的年利润为:400万元.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程;
(2)过曲线上一点作直线与曲线交于两点,中点为,,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图,在多面体中,底面是边长为的的菱形, ,四边形是矩形,平面平面, , 和分别是和的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019新型冠状病毒感染的肺炎的传播有飞沫、气溶胶、接触等途径,为了有效抗击疫情,隔离性防护是一项具体有效措施.某市为有效防护疫情,宣传居民尽可能不外出,鼓励居民的生活必需品可在网上下单,商品由快递业务公司统一配送(配送费由政府补贴).快递业务主要由甲公司与乙公司两家快递公司承接:“快递员”的工资是“底薪+送件提成”.这两家公司对“快递员”的日工资方案为:甲公司规定快递员每天底薪为70元,每送件一次提成1元;乙公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成5元,假设同一公司的快递员每天送件数相同,现从这两家公司往年忙季各随机抽取一名快递员并调取其100天的送件数,得到如下条形图:
(1)求乙公司的快递员一日工资y(单位:元)与送件数n的函数关系;
(2)若将频率视为概率,回答下列问题:
①记甲公司的“快递员”日工资为X(单位:元).求X的分布列和数学期望;
②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数).
(1)求曲线的参数方程与直线的普通方程;
(2)设点过为曲线上的动点,点和点为直线上的点,且满足为等边三角形,求边长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;
(Ⅱ)若该市政府拟采取分层抽样的方法在用水量吨数为和之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设为用水量吨数在中的获奖的家庭数,为用水量吨数在中的获奖家庭数,记随机变量,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中ABC—A1B1C1,ABAC,AB=3,AC=4,B1CAC1.
(1)求AA1的长;
(2)试判断在侧棱BB1上是否存在点P,使得直线PC与平面AA1C1C所成角和二面角B—A1C—A的大小相等,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com