精英家教网 > 高中数学 > 题目详情

【题目】己知,点是直线与圆的公共点,则的最大值为( ).

A. B. C. D.

【答案】B

【解析】

先根据直线与圆相交,圆心到直线的距离小于等于半径,以及圆半径为正数,求出k的范围,再根据P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,满足直线与圆方程,代入直线与圆方程,化简,求出用k表示的ab的式子,根据k的范围求ab的最大值.

由题意,圆心(0.0)到直线的距离d=

解得﹣3k1,

又∵k2﹣2k+30恒成立

k的取值范围为﹣3k1,

由点P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,

得(a+b)2﹣a2﹣b2=2ab=3k2+2k﹣3=3(k+2

k=﹣3时,ab的最大值为9.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在区间单调递减,在区间单调递增.函数.

(1)请写出函数与函数的单调区间;(只写结论,不需证明

(2)求函数的最大值和最小值;

(3)讨论方程实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为人,每位员工的培训费为元,培训机构的利润为元.

(1)写出 之间的函数关系式;

(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的短轴长为2,过上顶点E和右焦点F的直线与圆M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l过点(1,0),且与椭圆C交于点A,B,则在x轴上是否存在一点T(t,0)(t≠0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB (其中O为坐标原点),若存在,求出 t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.

(1)求出y关于x的函数解析式及x的取值范围;

(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求证:{ + }为等比数列,并求{an}的通项公式an
(2)数列{bn}满足bn=(3n﹣1) an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=lnx+
(1)函数g(x)=h(2x+m),若x=1是g(x)的极值点,求m的值并讨论g(x)的单调性;
(2)函数φ(x)=h(x)﹣ +ax2﹣2x有两个不同的极值点,其极小值为M,试比较2M与﹣3的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上单调递减.

(1)求参数的取值范围;

(2)请画出的示意图,若关于的方程恰有两个不相等的实数解,请根据图象说明的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数是奇函数。

(1)求a的值.

(2)判断函数fx)在R上的单调性并证明你的结论.

(3)求函数fx)在R上的值域.

查看答案和解析>>

同步练习册答案