精英家教网 > 高中数学 > 题目详情

【题目】下列命题:

①在一个列联表中,由计算得,则有的把握确认这两类指标间有关联

②若二项式的展开式中所有项的系数之和为,则展开式中的系数是

③随机变量服从正态分布,则

④若正数满足,则的最小值为

其中正确命题的序号为( )

A. ①②③B. ①③④C. ②④D. ③④

【答案】B

【解析】

根据可知①正确;代入可求得,利用展开式通项,可知时,为含的项,代入可求得系数为,②错误;根据正态分布曲线的对称性可知③正确;由,利用基本不等式求得最小值,可知④正确.

,则有的把握确认这两类指标间有关联,①正确;

②令,则所有项的系数和为:,解得:

则其展开式通项为:

,即时,可得系数为:,②错误;

③由正态分布可知其正态分布曲线对称轴为 ,③正确;

(当且仅当,即时取等号)

,④正确.

本题正确选项:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。

(1)分别写出两类产品的收益与投资额的函数关系式;

(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱台中, 侧面与侧面是全等的梯形,若,且.

(Ⅰ)若 ,证明: ∥平面

(Ⅱ)若二面角,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.根据该问题设计程序框图如下,若输入,则输出的值是( )

A. 8 B. 9 C. 12 D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCDA1B1C1D1是长方体,OB1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是( )

A.AMO三点共线B.AMOA1不共面

C.AMCO不共面D.BB1OM共面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修45:不等式选讲

设函数

)解不等式

)若对一切实数均成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为天以上且不超过天还车的概率分别为,两人租车都不会超过天.

(1)求甲所付租车费比乙多的概率;

(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案