A. | ($\frac{1}{2}$,+∞) | B. | (3,+∞) | C. | (-∞,-$\frac{1}{2}$) | D. | (-∞,-2) |
分析 由图象和导数与极值的关系可得bc的值,进而可得函数的解析式,由复合函数单调性可得.
解答 解:由图象可得f(0)=d=0,x=-2和x=3为函数f(x)的极值点,
∴f(x)=x3+bx2+cx,∴f′(x)=3x2+2bx+c,
∴x=-2和x=3是方程3x2+2bx+c=0的两实根,
∴-2+3=-$\frac{2b}{3}$,-2×3=$\frac{c}{3}$,
∴函数y=log${\;}_{\frac{1}{2}}$(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)=log${\;}_{\frac{1}{2}}$(x2-x-6),
由x2-x-6>0可得x<-2或x>3,
由复合函数单调性和二次函数单调性可得要求的单调递减区间为(3,+∞)
故选:B
点评 本题考查对数函数的单调性,涉及导数和极值问题,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com