精英家教网 > 高中数学 > 题目详情

【题目】在创建全国文明卫生城过程中,某市创城办为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的100人的得分(满分100)统计结果如下表所示:

(I)由频数分布表可以大致认为,此次问卷调查的得分Z服从正态分布近似为这100人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求P(37<Z≤79);

(II)(I)的条件下,创城办为此次参加问卷调查的市民制定如下奖励方案:

①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

②每次获赠的随机话费和对应的概率为:

现有市民甲参加此次问卷调查,记 (单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.

附:参考数据与公式:

【答案】(Ⅰ)0.8185;(Ⅱ)答案见解析.

【解析】

由题意计算可得:,结合正态分布的对称性可得P(37<Z≤79)的值为0.8185;

由题意可知的可能取值为,计算相应的概率值即可求得分布列,利用分布列计算可得.

,

综上,

Ⅱ)易知

获赠话费的可能取值为

的分布列为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为原点,其半径与椭圆的左焦点和上顶点的连线线段长度相等.

(1)求圆的标准方程;

(2)过椭圆右焦点的动直线(其斜率不为0)交圆两点,试探究在轴正半轴上是否存在定点,使得直线的斜率之和为0?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=

(1)写出该函数的单调区间;

(2)若函数=-m恰有3个不同零点,求实数m的取值范围;

(3)若n2-2bn+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数).

(I)讨论函数的单调性;

(II)若上的恒成立,求的范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①已知,“”是“”的充分条件;

②已知平面向量,“”是“”的必要不充分条件;

③已知,“”是“”的充分不必要条件;

④命题:“,使”的否定为:“,都有”.其中正确命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数a>0a≠1)是奇函数.

1)求常数k的值;

2)若已知f1=,且函数在区间[1+∞])上的最小值为—2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举办数学知识竞赛活动,共5000名学生参加,竞赛分为初试和复试,复试环节共3道题,其中2道单选题,1道多选题,得分规则如下:参赛学生每答对一道单选题得2分,答错得O分,答对多选题得3分,答错得0分,答完3道题后的得分之和为参赛学生的复试成绩.

(1)通过分析可以认为学生初试成绩服从正态分布,其中,试估计初试成绩不低于90分的人数;

(2)已知小强已通过初试,他在复试中单选题的正答率为,多选题的正答率为,且每道题回答正确与否互不影响.记小强复试成绩为,求的分布列及数学期望.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求函数的单调区间;

(2)当时,若对任意的恒成立,求实数的值;

(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在物理学中,声波在单位时间内作用在与其传递方向垂直的单位面积上的能量称声强.日常生活中能听到的声音其声强范围很大,最大和最小之间的比值可达.用声强的物理学单位表示声音强弱很不方便。当人耳听到两个强度不同的声音时,感觉的大小大致上与两个声强比值的常用对数成比例.所以引入声强级来表示声音的强弱.

某一处的声强级,是指该处的声强P与参考声强的比值的常用对数,单位为贝尔(B),其中参考声强/2实际生活中一般用1贝尔的十分之一,即分贝()来作为声强级的单位,其公式为声强级.若某工厂环境内有一台机器(声源)单独运转时,发出噪声的声强级为80分贝,那么两台相同的机器一同运转时(声强为原来的两倍),发出噪声的声强级为分______贝(精确到0.1分).

查看答案和解析>>

同步练习册答案