精英家教网 > 高中数学 > 题目详情
9.函数f(x)=3sin(2x-$\frac{π}{3}$)的图象为C,给出下列结论:
①图象C关于直线x=$\frac{11}{12}$π对称;
②图象C关于点(${\frac{2}{3}$π,0)对称;
③函数f(x)在区间(-$\frac{π}{12}$,$\frac{π}{3}}$)内是增函数;
其中正确的结论有(  )个.
A.1B.2C.3D.0

分析 由整体法求出函数的对称轴,对称中心和单调递增区间,结合选项可得.

解答 解:令2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$可得x=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,
当k=1时,可得函数的一条对称轴为x=$\frac{11}{12}$π,故①正确;
令2x-$\frac{π}{3}$=kπ可得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
当k=1时,可得函数的一个对称中心为($\frac{2π}{3}$,0),故②正确;
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,k∈Z,
当k=0时,可得函数的一个单调递增区间为(-$\frac{π}{12}$,$\frac{5π}{12}$),
由(-$\frac{π}{12}$,$\frac{π}{3}}$)?(-$\frac{π}{12}$,$\frac{5π}{12}$)可得③正确.
故选:C

点评 本题考查三角函数的对称性和单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.一个球的体积是100cm3,试计算它的表面积(π取3.14,结果精确到1cm3,可用计算器).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{2x+a}{x+1}$在区间(0,1)单调增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x、y为锐角,$tanx=\frac{4}{7}$,$siny=\frac{{\sqrt{10}}}{10}$,求tan(x+2y)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=x2-2kx+5在[2,4]上具有单调性,则实数k的取值范围是(  )
A.[4,+∞)B.(-∞,-2]C.[2,+∞)D.(-∞,2]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x+\frac{π}{4})=sin(2x+\frac{π}{4})$
(Ⅰ)求f(x)解析式及其对称中心;
(Ⅱ)若$a∈[-\frac{π}{4},\frac{7π}{24}]$,求f(a)的值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\left\{\begin{array}{l}{x+1,(x≤0)}\\{|lo{g}_{2}x|,(x>0)}\end{array}\right.$,则函数y=f[f(x)]-1的零点个数是7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在四面体ABCD中,已知$\overrightarrow{AB}$=$\overrightarrow b$,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow c$,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{EC}$,则$\overrightarrow{DE}$等于$\frac{1}{3}\overrightarrow{c}$-$\overrightarrow{a}$+$\frac{2}{3}\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=x2lnx,g(x)=ax3-x2
(1)求函数f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求实数a的取值范围;
(3)若使方程f(x)-g(x)=0在x∈[e${\;}^{-\frac{1}{3}}$,en](其中e=2.7…为自然对数的底数)上有解的最小a的值为an,数列{an}的前n项和为Sn,求证:Sn<3.

查看答案和解析>>

同步练习册答案