【题目】已知函数 .
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,
(ⅰ)求的单调区间;
(ⅱ)若在区间内单调递减,求的取值范围.
【答案】(Ⅰ);(Ⅱ)(ⅰ)递增区间为,单调递减区间为和,(ⅱ)
【解析】
(Ⅰ)先利用导数求出切线的斜率,再借助点斜式求出切线方程;(Ⅱ)在(i)中,先求 导数,然后对k讨论确定 的符号,从而求出单调区间;(ii)在(i)的基础上从集合角度建立不等式求解.
(Ⅰ)当时,,
所以
所以曲线在点 处的切线方程为
即;
(Ⅱ)时,
(ⅰ)函数,定义域为 ,
所以,令 ,得
①时,在 和, ;在, .
②所以的单调递增区间为 和,单调递减区间为;
③当 时,在, ;在和 , .
所以 的单调递增区间为,单调递减区间为和;
(ⅱ)由 在区间 内单调递减,
①时,,有,所以 ;
②当时,在 递减,符合题意
综上的取值范围是
科目:高中数学 来源: 题型:
【题目】对于曲线,若存在非负实常数和,使得曲线上任意一点有成立(其中为坐标原点),则称曲线为既有外界又有内界的曲线,简称“有界曲线”,并将最小的外界成为曲线的外确界,最大的内界成为曲线的内确界.
(1)曲线与曲线是否为“有界曲线”?若是,求出其外确界与内确界;若不是,请说明理由;
(2)已知曲线上任意一点到定点,的距离之积为常数,求曲线的外确界与内确界.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,离心率,是椭圆的左顶点,是椭圆的左焦点,,直线:.
(1)求椭圆方程;
(2)直线过点与椭圆交于、两点,直线、分别与直线交于、两点,试问:以为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:,且an+1(n=1,2…)集合M={an|}中的最小元素记为m.
(1)若a1=20,写出m和a10的值:
(2)若m为偶数,证明:集合M的所有元素都是偶数;
(3)证明:当且仅当时,集合M是有限集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,菱形中,,, 于.将沿翻折到,使,如图2.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线A′E与平面A′BC所成角的正弦值;
(Ⅲ)设为线段上一点,若平面,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.
(1)证明:平面BDC1⊥平面BDC;
(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭:()过点,且椭圆的离心率为.过椭圆左焦点且斜率为1的直线与椭圆交于,两点.
(1)求椭圆的方程;
(2)求线段的垂直平分线的方程;
(3)求三角形的面积.(为坐标原点)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com