精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=2BC=2,点MDC的中点,将△ADM沿AM折起,使得平面△ADM⊥平面ABCM

1)求证:ADBM

2)求点C到平面BDM的距离.

【答案】(1)见解析(2)

【解析】

1)取AM中点O,连结DO,可得DOBMAMBMMB⊥平面ADM,即可得BMAD

2,记点C到平面BDM的距离为hVCBDM,又VD-BCM=VC-BDM,即可得点C到平面BDM的距离.

1)取AM中点O,连结DO

因为平面ADM⊥平面ABCMAD=DM

所以OD⊥平面ABCMDOBM

易知AMBM

所以MB⊥平面ADM

所以BMAD

2)∵在矩形ADCB中,AB=2BC=2,点MDC的中点,

DM=CM=BM=AM==DO=

由(1)知MB⊥平面ADMDM平面ADM

BMDMSBDM=.,

又∵DO⊥平面ABCM

×=.,

记点C到平面BDM的距离为h

VC-BDM

又∵VD-BCM=VC-BDM

,解得h=

∴点C到平面BDM的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从年高考开始,高考物理、化学等六门选考科目的考生原始成绩从高到低划分为八个等级.参照正态分布原则,确定各等级人数所占比例分别为.选考科目成绩计入考生总成绩时,将等级内的考生原始成绩,依照等比例转换法则,分别转换到八个分数区间,得到考生的等级成绩.

某校级学生共人,以期末考试成绩为原始成绩转换了本校的等级成绩,为学生合理选科提供依据,其中物理成绩获得等级的学生原始成绩统计如下

成绩

93

91

90

88

87

86

85

84

83

82

人数

1

1

4

2

4

3

3

3

2

7

(1)求物理获得等级的学生等级成绩的平均分(四舍五入取整数);

(2)从物理原始成绩不小于分的学生中任取名同学,求名同学等级成绩不相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=Asin(ωx+)(A0,ω>0||)的部分图象如图所示.

(Ⅰ)求fx)的解析式;

(Ⅱ)若对于任意的x[0m]fx)≥1恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为为参数),交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)设点;若成等比数列,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定义为两点AB的“切比雪夫距离”,又设点P上任意一点Q,的最小值为点P到直线的“切比雪夫距离”,记作,给出下列三个命题:

①对任意三点ABC,都有

②已知点P(2,1)和直线,

③定点动点P满足则点P的轨迹与直线(为常数)有且仅有2个公共点.

其中真命题的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的方程为(x-12+y-12=2

1)在以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C1C2的极坐标方程;

2)直线θ=β(0<β<π)与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,底面是正三角形,侧棱底面.D,E分别是边BC,AC的中点,线段交于点G,且

(1)求证:∥平面

(2)求证:⊥平面

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合,.集合中的元素个数记为.规定:若集合满足,则称集合具有性质

(I)已知集合,写出的值;

(II)已知集合为等比数列,,且公比为,证明:具有性质

(III)已知均有性质,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南某地区10年间梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

假设每年的梅雨季节天气相互独立,求该地区未来三年里至少有两年梅雨季节的降雨量超过350mm的概率.

老李在该地区承包了20亩土地种植杨梅,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为,请你帮助老李分析,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?并说明理由.

降雨量

亩产量

500

700

600

400

查看答案和解析>>

同步练习册答案