精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(Ⅰ)若函数处取得极值,求的值;
(Ⅱ)若,函数上是单调函数,求的取值范围.

(1)  (2)

解析试题分析:解:(Ⅰ)
,可得 .         ……………………4分
(Ⅱ)函数的定义域是,  
因为,所以.        ……………………5分
所以……………………7分
要使上是单调函数,只要上恒成立.
时,恒成立,所以上是单调函数; 
时,令,得
此时上不是单调函数;
时,要使上是单调函数,只要,即
综上所述,的取值范围是.    ……………………12分
考点:本试题考查了导数在函数中的运用。
点评:导数做为一种工具,出现在函数中,主要处理一些关于函数单调性的问题,以及函数的最值和极值问题的运用。那么要明确,导数值为零是函数值在该点取得极值的必要不充分条件。属于难度试题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设a为实数, 函数 
(Ⅰ)求的极值.
(Ⅱ)当a在什么范围内取值时,曲线轴仅有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(Ⅰ)若,求的单调区间;
(Ⅱ)若当≥0时≥0,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知函数
(1)求函数的图像在点处的切线方程;
(2)若,且对任意恒成立,求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)若,求的最小值;
(Ⅱ)若当,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
函数,过曲线上的点的切线方程为
(Ⅰ)若时有极值,求的表达式;
(Ⅱ)若函数在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 若的极值点,求在[1,]上的最大值;
(2) 若在区间[1,+)上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知在x=2时有极大值6,在x=1时有极小值.
⑴ 求的值;
⑵ 求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

同步练习册答案