精英家教网 > 高中数学 > 题目详情
8.若$f(x)={x^{\frac{2}{3}}}-{x^{-\frac{1}{2}}}$,则满足f(x)>0的x的取值范围是(1,+∞).

分析 由已知得到关于x的不等式,化为根式不等式,然后化为整式不等式解之.

解答 解:由f(x)>0得到${x}^{\frac{2}{3}}>{x}^{-\frac{1}{2}}$即$\root{3}{{x}^{2}}>\frac{1}{\sqrt{x}}$,所以${x}^{\frac{7}{6}}>1$,解得x>1;
故x的取值范围为(1,+∞);
故答案为:(1,+∞);

点评 本题考查了根式不等式的解法;一般的转化为整式不等式解之.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和是Sn,且Sn=2an-1 (n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=log2 an,求数列(-1)nbn2前2n项的和T.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设P为△ABC所在平面内一点,且$3\overrightarrow{PA}+3\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,则△PAC的面积与△ABC的面积之比为(  )
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(wx+φ)(A>0,w>0,0<φ<$\frac{π}{2}$)的最小正周期为π,且图象上一个最低点为$M(\frac{2π}{3},-2)$
(1)求f(x)的解析式
(2)当$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x∈R,x2-x+1>0,则¬p为(  )
A.?x∉R,x2-x+1>0B.?x0∉R,${x_0}^2-{x_0}+1≤0$
C.?x∈R,x2-x+1≤0D.?x0∈R,${x_0}^2-{x_0}+1≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{i}{1+i}$(i是虚数单位)的实部是(  )
A.2B.-2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=ln(\sqrt{1+{x^2}}-x)+4$,f(lg(log210))=5,则f(lg(lg2))=(  )
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且1,an,Sn是等差数列.
(1)求数列{an}的通项公式;
(2)若bn=log2an,设cn=an•bn,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-$\frac{a}{x}$.
(1)当a=-3时,求函数f(x)的单调增区间;
(2)若函数f(x)在[1,e]上的最小值为$\frac{3}{2}$,求实数a的值.

查看答案和解析>>

同步练习册答案