精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+1-3(a>0且a≠1)的反函数的图象恒过定点A,且点A在直线mx+ny+1=0上,若m>0,n>0.则
1
m
+
2
n
的最小值为
 
分析:最值问题经常利用均值不等式求解,适时应用“1”的代换是解本题的关键.函数y=ax+1-3(a>0,a≠1)的反函数图象恒过定点A,知A(-2,-1),点A在直线mx+ny+1=0上,得2m+n=1又mn>0,∴m>0,n>0,下用1的变换构造出可以用基本不等式来求求最值.
解答:解:由已知定点A坐标为(-2,-1),由点A在直线mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
又mn>0,∴m>0,n>0,
1
m
+
2
n
=(
1
m
+
2
n
)(2m+n)=
2m+n
m
+
4m+2n
n
=4+
n
m
+
4m
n
≥4+2•
n
m
4m
n
=8

当且仅当m=
1
4
,n=
1
2
时取等号.
故答案为8
点评:当均值不等式中等号不成立时,常利用函数单调性求最值.也可将已知条件适当变形,再利用均值不等式,使得等号成立.均值不等式是不等式问题中的确重要公式,应用十分广泛.在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�