精英家教网 > 高中数学 > 题目详情
18.如图,边长为2的正方形ABCD所在平面与三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求证:AB∥平面CDE;
(2)求证:DE⊥平面ABE;
(3)求点A到平面BDE的距离.

分析 (1)推导出AB∥CD,由此能证明AB∥平面CDE.
(2)推导出AE⊥CD,DE⊥AE,从而CD⊥DE,再由DE⊥AB,能证明DE⊥平面ABE.
(3)由AB⊥平面ADE,能求出三棱锥B-ADE的体积.再由VA-BDE=VB-ADE,能求出点A到平面BDE的距离.

解答 证明:(1)∵正方形ABCD中,AB∥CD,
AB?平面CDE,CD?平面CDE,
∴AB∥平面CDE.
(2)∵AE⊥平面CDE,CD?平面CDE,DE?平面CDE,
∴AE⊥CD,DE⊥AE,
在正方形ABCD中,CD⊥AD,
∵AD∩AE=A,∴CD⊥平面ADE.
∵DE?平面ADE,∴CD⊥DE,
∵AB∥CD,∴DE⊥AB,
∵AB∩AE=E,∴DE⊥平面ABE.
解:(3)∵AB⊥AD,AB⊥DE,AD∩DE=D,
∴AB⊥平面ADE,
∴三棱锥B-ADE的体积VB-ADE=$\frac{1}{3}{S}_{△ADE}×AB$=$\frac{1}{3}×(\frac{1}{2}×\sqrt{4-1}×1)×2$=$\frac{\sqrt{3}}{3}$,
${S}_{△BDE}=\frac{1}{2}×DE×BE$=$\frac{1}{2}×\sqrt{4-1}×\sqrt{4+1}$=$\frac{\sqrt{15}}{2}$,
设点A到平面BDE的距离为d,
∵VA-BDE=VB-ADE,∴$\frac{1}{3}×\frac{\sqrt{15}}{2}d$=$\frac{\sqrt{3}}{3}$,解得d=$\frac{2\sqrt{5}}{5}$,
∴点A到平面BDE的距离为$\frac{2\sqrt{5}}{5}$.

点评 本题考查线面平行的证明,考查线面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线并且过椭圆的右焦点,记椭圆的离心率为e.
(1)求椭圆的离心率e的取值范围;
(1)若直线l的倾斜角为$\frac{π}{6}$,求e的大小;
(2)是否存在这样的e,使得原点O关于直线l对称的点恰好在椭圆C上,若存在,请求出e的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:
中学 甲 乙 丙 丁
人数 30 40 20 10
为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinα=$\frac{1}{3}$,α为第二象限角,则cosα的值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{2\sqrt{2}}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x-1)|x-a|-x-2a(x∈R).
(1)若a=-1,求方程f(x)=1的解集;
(2)若$a∈(-\frac{1}{2},0)$,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足:a1=1,3a2-a1=1,且$\frac{2}{{a}_{n}}$=$\frac{{a}_{n-1}+{a}_{n+1}}{{a}_{n-1}{a}_{n+1}}$(n≥2)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列b1=$\frac{1}{2}$,4bn=an-1an,设{bn}的前n项和Tn.证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知AB是圆C:x2+y2-4x+2y+a=0的一条弦,M(1,0)是弦AB的中点,若AB=3,则实数a的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(sinx)=cos3x,则f(cos10°)的值为(  )
A.±$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-4x-5<0},B={x|3<2x-1<7},设全集U=R,
求(1)A∪B.(2)A∩∁UB.

查看答案和解析>>

同步练习册答案