精英家教网 > 高中数学 > 题目详情
设a1,a2,…,an为正数,求证:
a
2
1
a2
+
a
2
2
a3
+…+
a
2
n-1
an
+
a
2
n
a1
≥a1+a2+…+an
分析:不妨设a1>a2>…>an>0,则a12>a22>…>an2
1
a1
1
a2
<…
1
an
,由排序原理:乱序和≥反序和,可得结论.
解答:证明:不妨设a1>a2>…>an>0,则a12>a22>…>an2
1
a1
1
a2
<…
1
an

由排序原理:乱序和≥反序和,可得:
a
2
1
a2
+
a
2
2
a3
+…+
a
2
n-1
an
+
a
2
n
a1
a12
a1
+
a22
a2
+…+
an2
an
=a1+a2+…+an
点评:本题考查不等式的证明,考查排序原理:乱序和≥反序和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A1、A2是椭圆
x2
9
+
y2
4
=1
=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为(  )
A、
x2
9
+
y2
4
=1
B、
y2
9
+
x2
4
=1
C、
x2
9
-
y2
4
=1
D、
y2
9
-
x2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

10、设a1,a2,…,an是1,2,…,n的一个排列,把排在ai的左边且比ai小的数的个数称为ai的顺序数(i=1,2,…,n).如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在由1、2、3、4、5、6、7、8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉安县模拟)设a1,a2,…,an是正整数1,2,3…n的一个排列,令bj表示排在j的左边且比j大的数的个数,bj称为j的逆序数,如在排列3,5,1,4,2,6中,5的逆序数是0,2的逆序数是3,则由1至9这9个数字构成的所有排列中,满足1的逆序数是2,2的逆序数是3,5的逆序数是3的不同排列种数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:044

设A1、A2是椭圆+=1(a>b>0)长轴的两个端点,P1P2是垂直于x轴的弦,求直线A1P1、A2P2的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A1、A2是椭圆+=1(a>b>0)长轴的两个端点,P1P2是垂直于x轴的弦,求直线A1P1、A2P2的交点P的轨迹方程.

 

查看答案和解析>>

同步练习册答案