17£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£»ÏÖÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=8cos¦È£®
£¨1£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©¹ýµãP£¨-1£¬0£©ÇÒÓëÖ±ÏßlƽÐеÄÖ±Ïßl1½»CÓÚA£¬BÁ½µã£»
¢ÙÇó|AB|µÄÖµ£»
¢ÚÇó|PA|+|PB|µÄÖµ£»
¢ÛÈôÏ߶ÎABµÄÖеãΪQ£¬Çó|PQ|µÄÖµ¼°µãQµÄ×ø±ê£®

·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄ»¥»¯·½·¨£¬¼´¿Éд³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©¹ýµãP£¨-1£¬0£©ÇÒÓëÖ±ÏßlƽÐеÄÖ±Ïßl1µÄ·½³ÌΪx-y+1=0£¬Çó³öÏÒÐľ࣬ÁªÁ¢Ö±Ïß·½³Ì£¬¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý£¬¿ÉµÃÆÕͨ·½³Ìl£ºx-y-2=0£»
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=8cos¦È£¬¼´¦Ñ2=8¦Ñcos¦È£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ x2+y2=8x£¬¼´£º£¨x-4£©2+y2=16
£¨2£©¹ýµãP£¨-1£¬0£©ÇÒÓëÖ±ÏßlƽÐеÄÖ±Ïßl1µÄ·½³ÌΪx-y+1=0£¬
¢ÙÔ²Ðĵ½Ö±ÏߵľàÀëd=$\frac{5}{\sqrt{2}}$£¬¡à|AB|=2$\sqrt{16-\frac{25}{2}}$=$\sqrt{14}$£»
¢ÚÉèABµÄÖеãΪQ£¬Ôò|PQ|=$\sqrt{25-\frac{25}{2}}$=$\frac{5}{2}\sqrt{2}$£¬
¡à|PA|+|PB|=2|PQ|=$5\sqrt{2}$£»
¢ÛÓÉ£¨2£©Öª$|PQ|=\frac{{5\sqrt{2}}}{2}$£¬Ö±ÏßCQµÄ·½³ÌΪx+y-4=0£¬Óëx-y+1=0ÁªÁ¢£¬¿ÉµÃµãQµÄ×ø±ê$Q£¨\frac{3}{2}£¬\frac{5}{2}£©$£®

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¯£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØϵ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¶ÔÓÚº¯Êý$f£¨x£©={log_2}\frac{1+x}{1-x}$£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©ÊÇÆ溯ÊýB£®f£¨x£©ÊÇżº¯Êý
C£®f£¨x£©ÊÇ·ÇÆæ·Çżº¯ÊýD£®f£¨x£©¼ÈÊÇÆ溯ÊýÓÖÊÇżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÃüÌâ¡°?x¡ÊR£¬x2+2x+3£¾0¡±µÄ·ñ¶¨ÊÇ?x0¡ÊR£¬x02+2x0+3¡Ü0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªµãP£¨a£¬b£©ºÍµãQ£¨b-1£¬a+1£©ÊǹØÓÚÖ±Ïßl¶Ô³ÆµÄÁ½µã£¬ÔòÖ±ÏßlµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®x+y=0B£®x-y=0C£®x-y+1=0D£®x+y-1=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÔÚ¼¸ºÎÌåSABCDÖУ¬AD¡ÍƽÃæSCD£¬BC¡ÎAD£¬AD=DC=2£¬BC=1£¬ÓÖSD=2£¬¡ÏSDC=120¡ã£¬FÊÇSAµÄÖе㣬EÔÚSCÉÏ£¬AE=$\sqrt{5}$£®
£¨¢ñ£©ÇóÖ¤£ºEF¡ÎƽÃæABCD£»
£¨¢ò£©ÇóÖ±ÏßSEÓëƽÃæSABËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èç¹û·½³Ì$\frac{{x}^{2}}{m-1}$-$\frac{{y}^{2}}{m-2}$=1±íʾ˫ÇúÏߣ¬ÄÇôʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®m£¾2B£®m£¼1»òm£¾2C£®-1£¼m£¼2D£®m£¼1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôº¯Êýy=log3xµÄ·´º¯ÊýΪy=g£¨x£©£¬Ôò$g£¨\frac{1}{2}£©$µÄÖµÊÇ£¨¡¡¡¡£©
A£®3B£®${log_3}\frac{1}{2}$C£®log32D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©¶ÔÈÎÒâµÄx£¬y¡ÊR£¬×ÜÓÐf£¨x+y£©=f£¨x£©+f£¨y£©£®
£¨1£©ÅжϺ¯Êýf£¨x£©µÄÆæżÐÔ²¢Ö¤Ã÷£»
£¨2£©Èôx£¼0ʱºãÓÐf£¨x£©£¾0£¬ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-x+12£¬x¡Ý5}\\{{2}^{x}£¬x£¼5}\end{array}\right.$£¬Èôf£¨f£¨a£©£©=16£¬Ôò a=2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸