【题目】已知椭圆的离心率为,且过点
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与圆相切于点,且与椭圆只有一个公共点.
①求证: ;
②当为何值时, 取得最大值?并求出最大值.
【答案】(Ⅰ) ;(Ⅱ)①.证明见解析;②.答案见解析.
【解析】试题分析:(1)椭圆的离心率为,又椭圆过已知点,即,再加上,联立可求得;(2)直线与圆及椭圆都相切,因此可以把直线方程与椭圆方程(或圆方程)联立方程组,此方程组只有一解,由此可得到题中参数的关系式,当然直线与圆相切,可利用圆心到直线的距离等于圆的半径来列式,得到的两个等式中消去参数即可证得①式;而②要求的最大值,可先求出,注意到,因此,这里设,由①中的方程(组)可求得,最终把用表示, ,利用不等式知识就可求得最大值.
试题解析:(1)椭圆E的方程为4分
(2)①因为直线与圆C: 相切于A,得,
即① 5分
又因为与椭圆E只有一个公共点B,
由得,且此方程有唯一解.
则即
②由①②,得8分
②设,由得
由韦达定理,
∵点在椭圆上,∴
∴10分
在直角三角形OAB中,
∴12分
科目:高中数学 来源: 题型:
【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点作的垂线交于另一点,若是的切线,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,由直三棱柱和四棱锥构成的几何体中, ,平面平面.
(Ⅰ)求证: ;
(Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题:函数的定义域为;命题:关于的方程有实根.
(1)如果是真命题,求实数的取值范围.
(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com