精英家教网 > 高中数学 > 题目详情
11.在△ABC,中,AB=2,cosC=$\frac{2\sqrt{7}}{7}$,D是AC上一点,AD=2DC,且cos∠DBC=$\frac{5\sqrt{7}}{14}$.则 $\overrightarrow{AD}$•$\overrightarrow{CB}$=-4.

分析 根据cosC,cos∠DBC的值,便可求出cos$∠BDC=-\frac{1}{2}$,从而求出sin∠BDC的值,可设DC=x,BC=a,在△BDC中,由正弦定理即可得出a=$\sqrt{7}x$,而在△ABC中,根据余弦定理即可求出x=1,从而得出AD,CB的值,这样进行数量积的计算即可求出$\overrightarrow{AD}•\overrightarrow{CB}$的值.

解答 解:△BDC中,∵$cosC=\frac{2\sqrt{7}}{7}$,$cos∠DBC=\frac{5\sqrt{7}}{14}$;
∴$sinC=\frac{\sqrt{21}}{7},sin∠DBC=\frac{\sqrt{21}}{14}$;
∠BDC=π-(C+∠DBC);
∴cos∠BDC=-cos(C+∠DBC)
=sinCsin∠DBC-cosCcos∠DBC
=$\frac{\sqrt{21}}{7}×\frac{\sqrt{21}}{14}-\frac{2\sqrt{7}}{7}×\frac{5\sqrt{7}}{14}$
=$-\frac{1}{2}$;
∴$sin∠BDC=\frac{\sqrt{3}}{2}$;
设DC=x,BC=a;
在△BDC中,由正弦定理得:$\frac{x}{\frac{\sqrt{21}}{14}}=\frac{a}{\frac{\sqrt{3}}{2}}$;
∴$a=\sqrt{7}x$;
在△ABC中,AC=3x,$BC=\sqrt{7}x$,AB=2;
∴由余弦定理得:$cosC=\frac{2\sqrt{7}}{7}=\frac{9{x}^{2}+{7x}^{2}-4}{6\sqrt{7}{x}^{2}}$;
解得x=1,∴$AD=2,CB=\sqrt{7}$;
∴$\overrightarrow{AD}•\overrightarrow{CB}=2\sqrt{7}cos(π-C)$=$-2\sqrt{7}cosC=-2\sqrt{7}×\frac{2\sqrt{7}}{7}=-4$.
故答案为:-4.

点评 考查两角和的余弦公式,正余弦定理,以及数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图所示,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,点E为AD边上的中点,过点D作DF∥BC交AB于点F,现将此直角梯形沿DF折起,使得A-FD-B为直二面角,如图乙所示.
(1)求证:AB∥平面CEF;
(2)若二面角的余弦值为-$\frac{\sqrt{30}}{10}$,求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=sin(2x+$\frac{π}{3}$),则下列结论正确的是(  )
A.f(x)的图象关于直线x=$\frac{π}{3}$对称
B.f(x)的图象关于点($\frac{π}{4}$,0)对称
C.把f(x)的图象向左平移$\frac{π}{12}$个单位长度,得到一个偶函数的图象
D.f(x)的最小正周期为π,且在[0,$\frac{π}{6}$]上为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线ax-y=0(a≠0)与函数$f(x)=\frac{{2{{cos}^2}x+1}}{{ln\frac{2+x}{2-x}}}$图象交于不同的两点A,B,且点C(6,0),若点D(m,n)满足$\overrightarrow{DA}+\overrightarrow{DB}=\overrightarrow{CD}$,则m+n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.古代数学家杨辉在沈括的隙积术的基础上想到:若由大小相等的圆球垛成类似于正四棱台的方垛,上底由a×a个球组成,以下各层的长、宽依次各增加过一个球,共有n层,最下层(即下底)由b×b个球组成,杨辉给出求方垛中圆球总数的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$),根据以上材料,我们可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解关于x的不等式:$\frac{ax}{x-1}≤1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列命题正确的是①③.(写出所有正确命题的序号)
①已知a,b∈R,“a>1且b>1”是“ab>1”的充分条件;
②已知平面向量$\overrightarrow a,\overrightarrow b$,“$|\overrightarrow a|>1$且$|\overrightarrow b|>1$”是“$|\overrightarrow a+\overrightarrow b|>1$”的必要不充分条件;
③已知a,b∈R,“a2+b2≥1”是“|a|+|b|≥1”的充分不必要条件;
④命题P:“?x0∈R,使${e^{x_0}}≥{x_0}+1$且lnx0≤x0-1”的否定为¬p:“?x∈R,都有ex<x+1且lnx>x-1”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=4${\;}^{{{log}_3}2}}$,b=4${\;}^{{{log}_9}6}}$,c=($\frac{1}{2}$)${\;}^{-\sqrt{5}}}$,则(  )
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在R上的奇函数f(x)满足x>0时,f(x)=x-$\sqrt{x}$+1.
(1)求函数f(x)的解析式; 
(2)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案