精英家教网 > 高中数学 > 题目详情

【题目】已知直角的三边长,满足.

Ⅰ)在之间插入个数,使这个数构成以为首项的等差数列,且它们的和为,求斜边的最小值;

Ⅱ)已知均为正整数,成等差数列,将满足条件的三角形的面积从小到大排成一列,,求满足不等式的所有的值;

Ⅲ)已知成等比数列,若数列满足,证明:数列中的任意连续三项为边长均可以构成直角三角形,是正整数.

【答案】123)见解析

:是等差数列, ,.

,斜边的最小值为 (当且仅当等号成立,

此时数列, .

的公差为,,.

设三角形的三边长为面积,

,

.

, ,

经检验当, ,, ,

综上所述,满足不等式的所有的值为.

证明:因为成等比数列, ,

因为为直角三角形的三边长,,

,,

于是,

,

则有,

故数列中的任意连续三项为边长均可以构成直角三角形.

因为

,

,同理可得,

故对于任意的都有是正整数.

【解析】试题分析(Ⅰ) 是等差数列, ,.

利用勾股定理与基本不等式的性质即可得出.
(Ⅱ)设的公差为,,.

设三角形的三边长为面积,

,利用等差数列的求和公式可得.由,经过分类讨论即可得出.

(Ⅲ)由成等比数列, ,因为为直角三角形的三边长,

,

,,可得,再利用勾股定理进行验证即可得出.

试题解析:

是等差数列, ,.

,斜边的最小值为 (当且仅当等号成立,

此时数列, .

的公差为,,.

设三角形的三边长为面积,

,

.

, ,

经检验当, ,, ,

综上所述,满足不等式的所有的值为.

证明:因为成等比数列, ,

因为为直角三角形的三边长,,

,,

于是,

,

则有,

故数列中的任意连续三项为边长均可以构成直角三角形.

因为

,

,同理可得,

故对于任意的都有是正整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差

10

11

13

12

8

发芽数/颗

23

25

30

26

16

(1)从这5天中任选2天,求这2天发芽的种子数均不小于25的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

附:回归直线的斜率和截距的最小二乘估计公式分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点分别为的中点,则下列说法正确的是______.

平面平面

平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时期著名的数学家刘徽对推导特殊数列的求和公式很感兴趣,创造并发展了许多算法,展现了聪明才智.他在《九章算术》“盈不足”章的第19题的注文中给出了一个特殊数列的求和公式.这个题的大意是:一匹良马和一匹驽马由长安出发至齐地,长安与齐地相距3000里(1里=500米),良马第一天走193里,以后每天比前一天多走13里.驽马第一天走97里,以后每天比前一天少走半里.良马先到齐地后,马上返回长安迎驽马,问两匹马在第几天相遇( )

A. 14天B. 15天C. 16天D. 17天

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数)的部分图象如图中实线所示,图中圆C的图象交于MN两点,且My轴上,则下列说法中正确的是(

A.函数的最小正周期是2π

B.函数的图象关于点成中心对称

C.函数单调递增

D.将函数的图象向左平移后得到的关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面是边长为的菱形,侧面底面,60°, , 中点,点在侧棱上.

(Ⅰ)求证: ;

(Ⅱ)是否存在,使平面 平面?若存在,求出,若不存在,说明理由.

(Ⅲ)是否存在,使平面?若存在,求出.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠肺炎疫情期间,为了减少外出聚集,“线上买菜”受追捧.某电商平台在地区随机抽取了位居民进行调研,获得了他们每个人近七天“线上买菜”消费总金额(单位:元),整理得到如图所示频率分布直方图.

1)求的值;

2)从“线上买菜”消费总金额不低于元的被调研居民中,随机抽取位给予奖品,求这位“线上买菜”消费总金额均低于元的概率;

3)若地区有万居民,该平台为了促进消费,拟对消费总金额不到平均水平一半的居民投放每人元的电子补贴.假设每组中的数据用该组区间的中点值代替,试根据上述频率分布直方图,估计该平台在地区拟投放的电子补贴总金额.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数的图象的一个对称中心,且点到该图象的对称轴的距离的最小值为.

的最小正周期是

的值域为

的初相

上单调递增.

以上说法正确的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列条件解三角形,有两解的有(

A.已知ab2B45°B.已知a2bA45°

C.已知b3cC60°D.已知a2c4A45°

查看答案和解析>>

同步练习册答案