精英家教网 > 高中数学 > 题目详情
20.函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a=1.

分析 根据函数f(x)=x2-ax-a的图象为开口向上的抛物线,所以函数的最大值在区间的端点取得,利用函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,可求实数a的值.

解答 解:∵函数f(x)=x2-ax-a的图象为开口向上的抛物线,
∴函数的最大值在区间的端点取得,
∵f(0)=-a,f(2)=4-3a,
∴$\left\{\begin{array}{l}-a>4-3a\\-a=1\end{array}\right.$或$\left\{\begin{array}{l}-a<4-3a\\ 4-3a=1\end{array}\right.$,
解得a=1,
∴实数a等于1,
故答案为:1

点评 本题考查的知识点是二次函数的图象图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)定义域是$\{x\left|x\right.≠\frac{t}{2},t∈Z,x∈R\}$,且f(x)+f(2-x)=0,f(x+1)=-$\frac{1}{f(x)}$,当-1<x<-$\frac{1}{2}$时,f(x)=-2-x
(Ⅰ)证明:f(x)为奇函数;
(Ⅱ)求f(x)在$(\frac{1}{2},1)$上的表达式;
(Ⅲ)是否存在正整数t,使得$x∈(3t+\frac{1}{2},3t+1)$时,log2f(x-3t)>x2-2tx-3t有解,若存在求出t的值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,既是奇函数又在[0,1]上单调递增的是(  )
A.y=|x|•x3B.y=xlnxC.y=x•cosxD.$y=-x-\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=2x2-2x的单调递增区间是(  )
A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{2x,x≤0}\\{\frac{1}{2}f(x-1),x>0}\end{array}$,那么$f(\frac{5}{2})$的值为-$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下面结论中正确的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若m⊥n,m⊥α,n∥β,则α∥β
C.若m⊥α,m⊥β,则α∥βD.若m∥n,m∥α,n∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$-3,$\overrightarrow{a}$=(2$\sqrt{3}$sinx,4),$\overrightarrow{b}$=(2cosx,cos2x).
(Ⅰ)求函数f(x)的最大值及此时x的值;
(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C所对的边,若f(A)为f(x)的最大值,且a=2,sinC=$\sqrt{3}$sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,∠DAB=60°,AB=2,△PAD为等边三角形,平面PAD⊥平面ABCD.
(1)求证AD⊥PB.
(2)在棱AB上是否存在点F,使DF与平面PDC所成角的正弦值为$\frac{2\sqrt{5}}{5}$?若存在,确定线段AF的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点A(2,-1)与B(4,3)的中点坐标是(3,1).

查看答案和解析>>

同步练习册答案