精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列{an}满足:a1=3,(2n﹣1)an+2=(2n+1)an1+8n2(n>1,n∈N*),设 ,数列{bn}的前n项的和Sn , 则Sn的取值范围为( )
A.
B.
C.
D.

【答案】B
【解析】解:∵(2n﹣1)an+2=(2n+1)an1+8n2(n>1,n∈N*),
∴(2n﹣1)an﹣(2n+1)an1=2(4n2﹣1),
又n>1,等式两端同除以4n2﹣1得:
,即数列{ }是以1为首项,2为公差的等差数列.
=2n﹣1,
=
∴sn= =

所以答案是B.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数存在单调递减区间,求实数的取值范围;

(2)设是函数的两个极值点,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为(
A.8,14,18
B.9,13,18
C.10,14,16
D.9,14,17

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=sinx+ cosx(x∈R),先将y=f(x)的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x= 对称,则θ的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2C﹣3cos(A+B)=1
(1)求角C的大小;
(2)若c= ,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是圆柱底面圆周的四等分点, 是圆心, 与底面垂直,底面圆的直径等于圆柱的高.

(1)证明:

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,求函数的单调区间;

(2)若 ,对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】沿着三条中位线折起后能够拼接成一个三棱锥,则称这样的为“和谐三角形”,设的三个内角分别为 ,则下列条件不能够确定为“和谐三角形”的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的不恒为零的函数,且对于任意实数x,y满足:f(2)=2,f(xy)=xf(y)+yf(x),an= (n∈N*),bn= (n∈N*),考查下列结论:
①f(1)=1;②f(x)为奇函数;③数列{an}为等差数列;④数列{bn}为等比数列.
以上命题正确的是

查看答案和解析>>

同步练习册答案