精英家教网 > 高中数学 > 题目详情

【题目】已知幂函数f(x)的图象经过点(3,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性,并用定义证明.

【答案】
(1)解:设幂函数f(x)=xα,其图象过点(3, ),

∴3α=

解得α=﹣2,

∴f(x)=x2


(2)解:函数f(x)=x2= ,在(0,+∞)上是单调减函数;

证明如下:任取x1,x2∈(0,+∞),且x1<x2

∴f(x1)﹣f(x2)= = >0,

f(x1)>f(x2),

∴函数f(x)在(0,+∞)上的是单调减函数


【解析】(1)设幂函数f(x)=xα , 利用图象过点(3, )求出α的值,即得解析式;(2)函数f(x)在(0,+∞)上是单调减函数,利用单调性定义即可证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .设分别为的中点.

(1)求证:平面∥平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题px[112]x2﹣a0.命题qx0R,使得x02+a﹣1x0+10.pq为真,pq为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中实数为常数,为自然对数的底数.

(1)当时,求函数的单调区间;

(2)当时,解关于的不等式

(3)当时,如果函数不存在极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求曲线在点处的切线方程;

(2)若处取得极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若1和8的原象分别是3和10,则5在f下的象是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 分别是中点,弧的半径分别为,点平分弧,过点作弧的切线分别交于点.四边形为矩形,其中点在线段上,点在弧上,延长交于点.设,矩形的面积为.

(1)求的解析式并求其定义域;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB 的中点M的轨迹C的方程;
(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是(

A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

同步练习册答案