精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线

(1)若直线与直线平行,求实数的值;

(2)若 ,点在直线上,已知的中点在轴上,求点的坐标.

【答案】(1);(2

【解析】试题分析:(1)根据两直线平行,对应方向向量共线,列方程即可求出的值;(2)根据时,直线的方程设出点的坐标,由此求出的中点坐标,再由中点在轴上求出点的坐标.

试题解析:(1)∵直线与直线平行,

,经检验知,满足题意.

(2)由题意可知:

,则的中点为

的中点在轴上,∴

型】解答
束】
16

【题目】在平面直角坐标系xOy中,已知ABC三个顶点坐标为A(78)B(104)C(2,-4)

(1)求BC边上的中线所在直线的方程;

(2)求BC边上的高所在直线的方程.

【答案】(1);(2)

【解析】试题分析:(1)根据中点坐标公式求出中点的坐标,根据斜率公式可求得的斜率,利用点斜式可求边上的中线所在直线的方程;(2)先根据斜率公式求出的斜率,从而求出边上的高所在直线的斜率为,利用点斜式可求边上的高所在直线的方程.

试题解析:1)由B(104)C(2,-4)BC中点D的坐标为(60),

所以AD的斜率为k8

所以BC边上的中线AD所在直线的方程为y08(x6)

8xy480

2)由B(104)C(2,-4)BC所在直线的斜率为k1

所以BC边上的高所在直线的斜率为-1

所以BC边上的高所在直线的方程为y8=-(x7),即xy150

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosxsinx+cos2x+xR

(1)求f(x)的单调递增区间;

(2)在锐角ABC中,角A,B,C的对边分别a,b,c,若f(A)=a=,求ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=)且与点A相距10海里的位置C.

(I)求该船的行驶速度(单位:海里/小时);

(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有5张编号依次为1、2、3、4、5的卡片,这5 张卡片除号码外完全相同.现进行有放回的连续抽取2 次,每次任意地取出一张卡片.

(1)求出所有可能结果数,并列出所有可能结果;

(2)求事件“取出卡片号码之和不小于7 或小于5”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点及圆 .

(1)若直线过点且与圆心的距离为,求直线的方程.

(2)设直线与圆交于 两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举办校园科技文化艺术节,在同一时间安排《生活趣味数学》和《校园舞蹈赏析》两场讲座.已知A、B两学习小组各有5位同学,每位同学在两场讲座任意选听一场.若A组1人选听《生活趣味数学》,其余4人选听《校园舞蹈赏析》;B组2人选听《生活趣味数学》,其余3人选听《校园舞蹈赏析》.
(1)若从此10人中任意选出3人,求选出的3人中恰有2人选听《校园舞蹈赏析》的概率;
(2)若从A、B两组中各任选2人,设X为选出的4人中选听《生活趣味数学》的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)判断的奇偶性并予以证明;

(2)时,求使的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,a1=1,前n项和为Sn , 且an+12﹣nλ2﹣1=2λSn , λ为正常数.
(1)求数列{an}的通项公式;
(2)记bn= ,Cn= + (k,n∈N*,k≥2n+2). 求证:
①bn<bn+1
②Cn>Cn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(6﹣m)﹣f(m)﹣18+6m≥0,则实数m的取值范围为(
A.[﹣3,3]
B.[3,+∞)
C.[2,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

同步练习册答案