精英家教网 > 高中数学 > 题目详情
19.化简:$\frac{1+3tanθ}{2cos2θ+sin2θ-1}$-$\frac{3+5tanθ}{cos2θ-4sin2θ-4}$.

分析 将tanθ=$\frac{sinθ}{cosθ}$,cos2θ=1-sin2θ,sin2θ=2sinθcosθ,代入原式,再对两式的分母进行因式分解并约分,最后通分即可得到结果.

解答 解:∵tanθ=$\frac{sinθ}{cosθ}$,cos2θ=1-sin2θ,sin2θ=2sinθcosθ,
∴原式=$\frac{1+3•\frac{sinθ}{cosθ}}{2(1-2sin^2θ)+2sinθcosθ-1}$-$\frac{3+5•\frac{sinθ}{cosθ}}{1-2sin^2θ-8sinθcosθ-4}$
=$\frac{\frac{cosθ+3sinθ}{cosθ}}{cos^2θ+2sinθcosθ-3sin^2θ}$+$\frac{\frac{3cosθ+5sinθ}{cosθ}}{3cos^2θ+8sinθcosθ+5sin^2θ}$
=$\frac{cosθ+3sinθ}{cosθ•[(cosθ+3sinθ)(cosθ-sinθ)]}$+$\frac{3cosθ+5sinθ}{cosθ•[(3cosθ+5sinθ)(cosθ+sinθ)]}$
=$\frac{1}{cosθ}$[$\frac{1}{cosθ-sinθ}$+$\frac{1}{cosθ+sinθ}$]
=$\frac{1}{cosθ}$•$\frac{2cosθ}{cos^2θ-sin^2θ}$
=$\frac{2}{cos2θ}$.
因此,原式=$\frac{2}{cos2θ}$.

点评 本题主要考查了三角函数中恒等变换的应用,涉及同角三角函数的基本关系式,倍角公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.集合A={(x,y)|x-y+4≥0},B={(x,y)|y≥x(x-2)},则集合A∩B的所有元素组成的图形的面积是(  )
A.$\frac{43}{2}$B.$\frac{55}{2}$C.$\frac{125}{6}$D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果点P(sinθ+cosθ,sinθcosθ)位于第二象限,那么角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图在四棱台ABCD-A1B1C1D1中,AA1⊥平面ABCD,两底面均为正方形,AB=AA1=2A1B1
(1)证明:CC1∥平面A1BD.
(2)在线段CC1上是否存在一点P,使得AP⊥平面A1BD,若存在,求$\frac{CP}{P{C}_{1}}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.光线从A(-3,4)点射出,到x轴上的B点后,被x轴反射,这时反射光线恰好过点C(1,6),则BC所在直线的方程为(  )
A.5x-2y+7=0B.2x-5y+7=0C.5x+2y-7=0D.2x+5y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.y=cos($\frac{π}{3}$-2x)的增区间为(  )
A.[2kπ-π,2kπ],k∈ZB.[2kπ,2kπ+π],k∈Z
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈ZD.[kπ+$\frac{π}{6}$,kπ+$\frac{2}{3}$π],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=2x2-4ax+2b2,若a∈{4,6,8},b∈{3,5,7},则该函数有两个零点的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知loga(x2-x-5)=0,则x=-2或3.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北冀州市高二文上月考三数学试卷(解析版) 题型:选择题

已知,若不等式恒成立,则的最大值为( )

A.4 B.3

C.9 D.12

查看答案和解析>>

同步练习册答案