精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)=cos(x+ )图象上所有点的横坐标缩短为原来的 倍,纵坐标不变,得到函数g(x)的图象,则函数g(x)的一个减区间是(
A.[﹣ ]
B.[﹣ ]
C.[﹣ ]
D.[﹣ ]

【答案】D
【解析】解:将函数f(x)=cos(x+ )图象上所有点的横坐标缩短为原来的 倍,纵坐标不变,
则y=cos(2x+ ),
即g(x)=cos(2x+ ),
由2kπ≤2x+ ≤2kπ+π,k∈Z,
得kπ﹣ ≤x≤kπ+ ,k∈Z,
即函数的单调递减区间为[kπ﹣ ,kπ+ ],k∈Z,
当k=0时,单调递减区间为[﹣ ],
故选:D.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知X是离散型随机变量,P(X=1)= ,P(X=a)= ,E(X)= ,则D(2X﹣1)等于( )
A.
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3 ax2 , 且关于x的方程f(x)+a=0有三个不等的实数根,则实数a的取值范围是(
A.(﹣∞,﹣ )∪(0,
B.(﹣ ,0)∪( ,+∞)
C.(﹣
D.(﹣∞,﹣ )∪( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中, =
(1)求角A;
(2)若a=2,且sinB+cos(C+2B﹣ )取得最大值时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,AB为圆O的直径,CD为垂直AB的一条弦,垂足为E,弦AG交CD于F.

(1)求证:E、F、G、B四点共圆;
(2)若GF=2FA=4,求线段AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x|x﹣a|,若对于任意的x1 , x2∈[﹣2,+∞),x1≠x2 , 不等式 >0恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,D是BC的中点.

(1)若E为B1C1的中点,求证:BE∥平面AC1D;
(2)若平面B1BCC1⊥平面ABC,且AB=AC,求证:平面AC1D⊥平面B1BCC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= +lnx,其中a为实常数.
(1)讨论f(x)的单调性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (θ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=﹣2.
(1)求C1和C2在直角坐标系下的普通方程;
(2)已知直线l:y=x和曲线C1交于M,N两点,求弦MN中点的极坐标.

查看答案和解析>>

同步练习册答案