精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右顶点分别为,上下顶点分别为,左、右焦点分别为,离心率为e.

1)若,设四边形的面积为,四边形的面积为,且,求椭圆C的方程;

2)若,设直线与椭圆C相交于PQ两点,分别为线段的中点,坐标原点O在以MN为直径的圆上,且,求实数k的取值范围.

【答案】1

2

【解析】

1)依题意可得,,再结合,即可解出,得出椭圆C的方程;

2)联立直线和椭圆C的方程,可解得,再利用坐标原点O在以MN为直径的圆上,得到,且为矩形,因此,即可用表示出,然后根据离心率的范围求出的范围,即可根据二次函数的知识求出.

1,由,可得,化为

联立,解得,∴椭圆C的方程为.

2)设,联立,可得

.

由题意可知:,且为矩形,

,而

,∴

,∴

可得,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,平面平面.

(1)求证:平面

(2)求平面与平面夹角的余弦值,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 中,分别为边的中点,以为折痕把折起,使点到达点的位置,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价元,售价元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区天的销售量如下表:

(视样本频率为概率)

(1)根据该产品天的销售量统计表,记两天中一共销售该食品份数为,求的分布列与期望

(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进份,哪一种得到的利润更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为,上下顶点分别为,左、右焦点分别为,离心率为e.

1)若,设四边形的面积为,四边形的面积为,且,求椭圆C的方程;

2)若,设直线与椭圆C相交于PQ两点,分别为线段的中点,坐标原点O在以MN为直径的圆上,且,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】折纸与数学有着千丝万缕的联系,吸引了人们的广泛兴趣.因纸的长宽比称为白银分割比例,故纸有一个白银矩形的美称.现有一张如图1所示的

分别为的中点,将其按折痕折起(如图2),使得四点重合,重合后的点记为,折得到一个如图3所示的三棱锥.记的中点,在中,边上的高.

1)求证:平面

2)若分别是棱上的动点,且.当三棱锥的体积最大时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD为BC边上的中线,cos B=,AD=,求△ABC的面积.

查看答案和解析>>

同步练习册答案