精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的前n项和为Sn,${S_n}={n^2}-7n\;(n∈N*)$.
(1)求数列{an}通项公式,并证明{an}为等差数列.
(2)求当n为多大时,Sn取得最小值.

分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥0}\end{array}\right.$,由${S_n}={n^2}-7n\;(n∈N*)$,能求出数列{an}通项公式,并能证明{an}为等差数列.
(2)由当${a_n}=2n-8\;≤0(n∈{N^*})$时,解得n≤4,能求出Sn取得最小值是n的值.

解答 解:(1)∵数列{an}的前n项和为Sn,${S_n}={n^2}-7n\;(n∈N*)$,
∴当n≥2时,${a_n}={S_n}-{S_{n-1}}=({n^2}-7n)-[{(n-1)^2}-7(n-1)]$=2n-8,
当n=1时,S1=a1=-6,满足上式,
∴${a_n}=2n-8\;(n∈{N^*})$,
又∵${a_n}-{a_{n-1}}=(2n-8)-[2(n-1)-8]=2\;(n≥2,n∈{N^*})$,
∴{an}为等差数列.
(2)∵当${a_n}=2n-8\;≤0(n∈{N^*})$时,解得n≤4,
a4=2×4-8=0,
∴当n=3或n=4,时Sn取得最小值.

点评 本题考查数列的通项公式和等差数列的证明,考查Sn取得最小值时项数n的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cosωx($\sqrt{3}$sinωx-cosωx)+m(ω>0)的两条对称轴之间的最小距离为$\frac{π}{2}$
(I)求ω的值及y=f(x)的单调递增区间;
(II)若y=f(x)在[-$\frac{π}{3}$,$\frac{π}{6}}$]上的最大值与最小值之和为$\frac{5}{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.P为△ABC所在平面外一点,PO⊥面ABC于O.证明:
(1)若PA=PB=PC,则O为△ABC的外心;
(2)若PA⊥BC,PC⊥AB,则PB⊥AC,且O为△ABC的垂心;
(3)若PA,PB,PC两两垂直,则O为△ABC的垂心;
(4)若P到△ABC各边的距离相等(且O在三角形的内部),则O为△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图1所示,在边长为12的正方形AA′A′1A1中,点B,C在线段AA′上,且AB=3,BC=4,作BB1∥AA1,分别交A1A1′、AA1′于点B1、P,作CC1∥AA1,分别交A1A1′、AA1′于点C1、Q,将该正方形沿BB1、CC1折叠,使得$A'{A_1}^′$与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1

(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比;
(3)试判断直线AQ是否与平面A1C1P平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.1、2、3、4、5、6、7、8、9、10十个数字,排完队后把偶数项拿走,在新的数列中再把偶数项拿走…最后剩什么数字?如果拿走奇数项呢?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}满足a1=1,an+1=2an(n∈N*),则an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各进制数中,最小的是(  )
A.85(9)B.210(6)C.1000(4)D.111 111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若集合 M={1,2,4},N={1,4,6},则M∩N等于(  )
A.{1,4}B.{1,4,6}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜,中斜和大斜,“术”即方法.以S,a,b,c分别表示三角形的面积,大斜,中斜,小斜,ha,hb,hc分别为对应的大斜,中斜,小斜上的高,所以S=$\sqrt{\frac{1}{4}[{a}^{2}×{b}^{2}-(\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2})^{2}]}$=$\frac{1}{2}$aha=$\frac{1}{2}$bhb=$\frac{1}{2}$chc.已知ha=3,hb=4,hc=6,根据上述公式,可以推理其对应边分别为(  )
A.$\frac{32\sqrt{15}}{15}$,$\frac{8\sqrt{15}}{5}$,$\frac{16\sqrt{15}}{15}$B.$\frac{32}{15}$,$\frac{8}{5}$,$\frac{16}{15}$
C.4,3,2D.8,6,4

查看答案和解析>>

同步练习册答案