【题目】在一次数学考试中,从甲,乙两个班级各抽取10名同学的成绩进行统计分析,他们成绩的茎叶图如图所示,成绩不小于90分为及格.
(1)从两班10名同学中各抽取一人,在有人及格的情况下,求乙班同学不及格的概率;
(2)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为,求的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】已知一个正四面体和一个正四棱锥,它们的各条棱长均相等,则下列说法:
①它们的高相等;②它们的内切球半径相等;③它们的侧棱与底面所成的线面角的大小相等;④若正四面体的体积为,正四棱锥的体积为,则;⑤它们能拼成一个斜三棱柱.其中正确的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,角A,B,C的对边分别为a,b,c,
(1)若还同时满足下列四个条件中的三个:①,②,③,④的面积,请指出这三个条件,并说明理由;
(2)若,求周长L的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次运动会上,某单位派出了由6名主力队员和5名替补队员组成的代表队参加比赛.
(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为,求随机变量的数学期望;
(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场,那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中为常数,函数和的图象在它们与坐标轴交点处的切线互相平行.
(1)求的值;
(2)若存在,使不等式成立,求实数的取值范围;
(3)令,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为培养学生对传统文化的兴趣,某校从理科甲班抽取60人,从文科乙班抽取50人参加传统文化知识竞赛.
(1)根据题目条件完成下边列联表,并据此判断是否有99%的把握认为学生的传统文化知识竞赛成绩优秀与文理分科有关.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | 20 | ||
总计 | 60 |
(2)现已知,,三人获得优秀的概率分别为,,,设随机变量表示,,三人中获得优秀的人数,求的分布列及期望.
附:,.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列与满足,.
(1)若,且,求的通项公式;
(2)设的第项是最大项,即,求证:的第项是最大项;
(3)设,求的取值范围,使得有最大值与最小值,且.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com