【题目】已知函数有两个不同的极值点.
(1)求实数的取值范围;
(2)设,讨论函数的零点个数.
【答案】(Ⅰ) (Ⅱ) 当时,有2个零点;当时,有1个零点;当时,没有零点.
【解析】
(Ⅰ)由题意,求得,令,得,设,转化为直线y=a与函数的图象有两个不同的交点,利用导数求得函数的单调性与最值,进而求解的取值范围;
(Ⅱ)由(Ⅰ)可知,,且,求得函数的单调性和极值,分类讨论,即可确定函数的极值点的个数.
(Ⅰ)由题意,求得,因为有两个不同的极值点,则有两个不同的零点.
令,则,即.
设,则直线y=a与函数的图象有两个不同的交点.
因为,由,得ln x<0,即,所以在上单调递增,在上单调递减,从而.
因为当时,;当时,;当时,,
所以a的取值范围是.
(Ⅱ)因为,为的两个极值点,则,为直线与曲线的两个交点的横坐标.
由(Ⅰ)可知,,且,
因为当或时,,即;当时,,即,
则在,上单调递减,在上单调递增,
所以的极小值点为,极大值点为.
当时,因为,,,则,
所以在区间内无零点.
因为,,则
①当,即时,.
又,则,所以
.
此时在和内各有1个零点,且.
②当,即时,,此时在内有1个零点,且.
③当,即时,,此时在内无零点,且.
综上分析,当时,有2个零点;当时,有1个零点;当时,没有零点.
科目:高中数学 来源: 题型:
【题目】如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )
A.2018年3月至2019年3月全国居民消费价格同比均上涨
B.2018年3月至2019年3月全国居民消费价格环比有涨有跌
C.2019年3月全国居民消费价格同比涨幅最大
D.2019年3月全国居民消费价格环比变化最快
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个结论:
①命题“,”的否定是“,”;
②命题“若,则且”的否定是“若,则”;
③命题“若,则或”的否命题是“若,则或”;
④若“是假命题,是真命题”,则命题,一真一假.
其中正确结论的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且经过点
(1)求椭圆的方程;
(2)是否存在经过点的直线,它与椭圆相交于两个不同点,且满足为坐标原点)关系的点也在椭圆上,如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、、、是同一平面上不共线的四点,若存在一组正实数、、,使得,则三个角、、( )
A. 都是钝角B. 至少有两个钝角
C. 恰有两个钝角D. 至多有两个钝角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:函数f(x)=x2+2mx+1在(-2,+∞)上单调递增;命题q:函数g(x)=2x2+2(m-2)x+1的图象恒在x轴上方,若p∨q为真,p∧q为假,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是由容量为100的样本得到的频率分布直方图.其中前4组的频率成等比数列,后6组的频数成等差数列,设最大频率为a,在到之间的数据个数为b,则a,b的值分别为( )
A.,78
B.,83
C.,78
D.,83
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com