精英家教网 > 高中数学 > 题目详情
若函数f(x)=x2-2ax-1在[2,+∞)上是单调递增函数,则实数a的取值范围是
 
考点:二次函数的性质
专题:函数的性质及应用
分析:根据二次函数的图象和性质,可得a≤2,从而得出结论.
解答: 解:由于二次函数y=x2-2ax+1的图象是开口向上的抛物线,其对称轴为x=a,且在区间[2,+∞)上的单调递增,
故有a≤2.
故答案为:a≤2.
点评:本题主要考查二次函数的图象和性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).

(Ⅰ)求f(x)的解析式及x0的值;
(Ⅱ)求f(x)在[-π,π]上的单调区间;
(Ⅲ)若f(x)=
8
5
,x∈(0,
π
3
),求cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=8x-2-x+2的一个零点所在区间为(  )
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
lg|x|
x2
的大致图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆mx2+ny2=1与直线x+y=1相交于A、B两点,C为AB中点,若|AB|=2
2
,O为坐标原点,OC的斜率为
2
2
,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=ax2+bx+c的对称轴为x=1,一元二次方程ax2+bx+c=0有一根为3,则另一根为(  )
A、-3B、-1C、0D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的两个焦点间的距离为8,长轴端点坐标分别是(-6,0),(6,0),求椭圆的方程.
(2)求与椭圆
x2
9
+
y2
8
=1
有相同的焦点,且离心率为
1
2
的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加高一年级期末考试的学生中抽出60名学生,将其生物成绩(均为整数)分成六段[40,50),[50,60),…,[90,100],频率分布直方图如图.观察图形的信息,回答下列问题:
(1)求出生物成绩低于50分的学生人数;
(2)估计这次考试的众数m与中位数n (结果保留一位小数)
(3)估计这次考试的及格率(60分及以上为及格).

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数f(x)满足f(x)=x3-8(x≥0),则使f(a-2)>0成立的a的取值范围是
 

查看答案和解析>>

同步练习册答案