精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=log2(x+$\frac{6}{x}$-a)的定义域为A,值域为B.
(1)当a=5时,求集合A;
(2)设I=R为全集,集合M={x|y=$\frac{{x}^{2}-x+1}{2(a-5)x+4(a-5)-8}$},若(∁IM)∪(∁IB)=∅,求实数a的取值范围.

分析 (1)当a=5时,f(x)=log2(x+$\frac{6}{x}$-5),令x+$\frac{6}{x}$-5>0,解得x∈(0,2)∪(3,+∞);
(2)∵(CIM)∪(CIB)=∅,∴CIM=∅,CIB=∅,由于全集I=R,所以,M=B=R,再分类讨论求解.

解答 解:(1)当a=5时,f(x)=log2(x+$\frac{6}{x}$-5),
令x+$\frac{6}{x}$-5>0,解得x∈(0,2)∪(3,+∞),
即函数的定义域A={x|0<x<2或x>3}
(2)∵(CIM)∪(CIB)=∅,
∴CIM=∅,CIB=∅,由于全集I=R,
所以,M=B=R,
①若B=R,即函数f(x)的值域为R,
 只要真数u(x)=x+$\frac{6}{x}$-a可取到一切正实数即可,
 则x>0且u(x)min≤0,
∴u(x)min=2$\sqrt{6}$-a≤0,解得a≥2$\sqrt{6}$,
②若M=R,即函数y=$\frac{{x}^{2}-x+1}{2(a-5)x+4(a-5)-8}$的定义域为R,
 则a=5或$\left\{\begin{array}{l}a-5≠0\\△=4(a-5)2+16(a-5)<0\end{array}$,
 解得1<a≤5,
综合以上讨论得,实数a的取值范围为[2$\sqrt{6}$,5].

点评 本题主要考查了对数函数的图象与性质,涉及函数的值域和最值,集合的运算,体现了分类讨论的解题思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知α⊥β,a?α,b?β,b是α的斜线,a⊥b,则α与β的位置关系是(  )
A.α∥βB.α与β相交不垂直C.α⊥βD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某商品的进价为2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员最低可以折几折出售此商品?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x2-4x+y2+6y+$\sqrt{z-2}$+13=0,则(xy)2=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,直线l的方程为ρcos(θ$+\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系(两坐标系取相同的长度单位),曲线C:x2+y2=4在坐标伸缩变换ρ:$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{y}{2}}\end{array}\right.$,作用下变为曲线C1
(1)求直线l的倾斜角α和曲线C1的方程;
(2)判断直线l和曲线C1是否相交.若相交,求出弦长;若不相交,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an},观察程序框图,若k=5时,分别有S=25.
(1)试求数列{an}的通项;
(2)令bn=2${\;}^{{a}_{n}}$,求{bn}的前n项和Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)=1+lgx,g(x)=x2,那么使2f[g(x)]=g[f(x)]的x的值是${10}^{1±\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,AC=AB1

(1)文字叙述平面与平面垂直判定定理;
(2)求证:平面ABO⊥平面ACB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有一次命中的概率为(  )
A.0.25B.0.2C.0.35D.0.4

查看答案和解析>>

同步练习册答案