精英家教网 > 高中数学 > 题目详情
1.平行四边形ABCD中,已知AB=3+$\sqrt{3}$,BD=3$\sqrt{2}$,∠BDC=45°.求:
(1)AD的长;
(2)角A的大小.

分析 (1)利用余弦定理直接求解AD的长;
(2)利用正弦定理直接求出角A的正弦函数值,然后求出A的值.

解答 解:(1)平行四边形ABCD中,已知AB=3+$\sqrt{3}$,BD=3$\sqrt{2}$,∠BDC=45°,
可得,∠ABD=45°,
AD2=AB2+BD2-2AB•BDcos∠ABD=12+6$\sqrt{3}$+18-2(3+$\sqrt{3}$)(3$\sqrt{2}$)×$\frac{\sqrt{2}}{2}$=12.
AD=2$\sqrt{3}$.
(2)由正弦定理可知:$\frac{BD}{sinA}=\frac{AD}{sin∠ABD}$,可得sinA=$\frac{3\sqrt{2}×\frac{\sqrt{2}}{2}}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
可得A=60°.

点评 本题考查余弦定理以及正弦定理的应用,考查三角形的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知方程log${\;}_{2}^{2}$x-2log2x+3-a=0在[1,8]上有且只有一解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,AA1是平行四边形ABCD所在平面的一条斜线段,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,且4$\overrightarrow{CR}$=$\overrightarrow{R{A}_{1}}$,则$\overrightarrow{AR}$等于(  )
A.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$+$\frac{1}{5}$$\overrightarrow{c}$B.$\frac{1}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$+$\frac{4}{5}$$\overrightarrow{c}$C.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$+$\frac{1}{5}$$\overrightarrow{c}$D.$\frac{1}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$+$\frac{3}{5}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$的奇偶性、值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,M,N分别是AB,PC的中点.求证:MN⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=(m2-m-1)${x}^{{m}^{2}-2m-3}$,当m取什么值时.
(1)f(x)是正比例函数;
(2)f(x)是反比例函数;
(3)f(x)是幂函数,且在第一象限内它的图象是下降曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定点A(0,-1),点B在圆F:(x-1)2+y2=16上一运动,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知斜率为-1的直线l与圆C:x2+y2=4交于M,N不同的两点,
(1)求直线l在x轴上的截距的取值范围:
(2)若弦MN的中点为P,点P的轨迹方程为C′,将圆C:x2+y2=4先向上平移1个单位长度,再向右平移1个单位长度,得到圆C″,求C′在C″内的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的定义域:
(1)y=$\sqrt{sin(cosx)}$;
(2)y=$\sqrt{1-2cosx}$+lg(2sinx-1).

查看答案和解析>>

同步练习册答案