精英家教网 > 高中数学 > 题目详情

【题目】(理)已知数列满足),首项

1)求数列的通项公式;

2)求数列的前项和

3)数列满足,记数列的前项和为ABC的内角,若对于任意恒成立,求角的取值范围.

【答案】(1);(2);(3)

【解析】

1)通过在两边同时除以,进而可知数列是首项为、公差为1的等差数列,计算即得结论;

2)通过(1),利用错位相减法计算即得结论;

3)通过(1)计算可知,进而利用错位相减法计算可知,利用及二倍角公式化简可知,结合计算即得结论.

1)数列满足

,又

为常数,

数列是首项为、公差为1的等差数列,

2)由(1)可知

两式错位相减,得:

3)由(1)可知

数列满足

恒成立,且对于任意成立,

,即

,即

,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线是双曲线的一条渐近线,点在双曲线C上,设坐标原点为O.

1)求双曲线C的方程;

2)若过点的直线l与双曲线C交于RS两点,若,求直线l的方程;

3)设在双曲线上,且直线AMy轴相交于点P,点M关于y轴对称的点为N,直线ANy轴相交于点Q,问:在x轴上是否存在定点T,使得?若存在,求出点T的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线的方程为,曲线的方程为.以极点为原点,极轴为轴正半轴建立直角坐标系

(1)求曲线的直角坐标方程;

(2)若曲线轴相交于点,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1是函数数的导函数,记,若在区间上为单调函数,求实数a的取值范围;

(2)设实数,求证:对任意实数,总有成立.

附:简单复合函数求导法则为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,记棱长为1的正方体,以各个面的中心为顶点的正八面体为,以各面的中心为顶点的正方体为,以各个面的中心为顶点的正八面体为,……,以此类推得一系列的多面体,设的棱长为,则数列的各项和为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,并且,数列满足:,记数列的前项和为

1)求数列的通项公式及前项和公式

2)求数列的通项公式及前项和公式

3)记集合,若的子集个数为16,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是两个垃圾中转站,的正东方向千米处,的南面为居民生活区.为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂.垃圾发电厂的选址拟满足以下两个要求(可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大).现估测得两个中转站每天集中的生活垃圾量分别约为吨和吨.设

1)求(用的表达式表示);

2)垃圾发电厂该如何选址才能同时满足上述要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物.虽然只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响.我国标准如下表所示.我市环保局从市区四个监测点2018年全年每天的监测数据中随机抽取天的数据作为样本,监测值如茎叶图如图所示.

(Ⅰ)求这天数据的平均值;

(Ⅱ)从这天的数据中任取天的数据,记表示其中空气质量达到一级的天数,求的分布列和数学期望;

(Ⅲ)以天的日均值来估计一年的空气质量情况,则一年(按天计算)中大约有多少天的空气质量达到一级.

查看答案和解析>>

同步练习册答案