精英家教网 > 高中数学 > 题目详情
8.已知P(x,y)是双曲线$\frac{{x}^{2}}{4}-{y}^{2}$=1上任意一点,F1是双曲线的左焦点,O是坐标原点,则$\overrightarrow{PO}•\overrightarrow{P{F}_{1}}$的最小值是4-2$\sqrt{5}$.

分析 先算出$\overrightarrow{PO}•\overrightarrow{P{F}_{1}}$的表达式,根据x的取值范围,求出$\overrightarrow{PO}•\overrightarrow{P{F}_{1}}$的最值.

解答 解:由已知可得:F1的坐标为(-$\sqrt{5}$,0),
设P(x,y),
则$\overrightarrow{PO}•\overrightarrow{P{F}_{1}}$=(-x,-y)•(-$\sqrt{5}$-x,-y)=x2+$\sqrt{5}$x+y2=x2+$\sqrt{5}$x+$\frac{{x}^{2}}{4}-1$=$\frac{5}{4}$x2+$\sqrt{5}$x-1=($\frac{\sqrt{5}}{2}$x+1)2-2,x∈(-∞,-2]∪[2,+∞).
∴当x=-2时,$\overrightarrow{PO}•\overrightarrow{P{F}_{1}}$的最小值为:4-2$\sqrt{5}$,
故答案为:4-2$\sqrt{5}$

点评 本题主要考查了双曲线的性质,平面向量的数量积,函数的值域,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设数列{an}满足${a_1}=2,{a_{n+1}}=a_n^2-n{a_n}+1,n∈{N^*}$.
(1)求a2,a3,a4
(2)由( 1)猜想an的一个通项公式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等差数列{an}的前n项为Sn,已知a1=-11,a3+a7=-6,当Sn取最小值时,n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|2x-4|+1.
(Ⅰ)解不等式f(x)>|x+1|;
(Ⅱ)设正数a,b满足ab=a+b,若不等式f(m+1)≤a+4b对任意a,b∈(0,+∞)都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集U={1,2,3,…,10},A={1,2,3,4,5},B={4,5,6,7,8},C={3,5,7,9},求 A∪B,A∩B,(CUA)∩B,A∪( B∩C).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知1≤lg(xy)≤4,-1$≤lg\frac{x}{y}$≤2,则lg$\frac{{x}^{2}}{y}$的取值范围是[-1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在梯形ABCD中,∠ABC=$\frac{π}{2}$,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为$\frac{5π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$y=\frac{1}{{a{x^2}-ax+1}}$的定义域R,则实数a的取值范围为(  )
A.a≤0或a>4B.0≤a<4C.0<a<4D.0≤a≤4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(1)△ABC中,a=3$\sqrt{3}$,c=2,B=150°,求b.
(2)△ABC中,a=2,b=$\sqrt{2}$,c=$\sqrt{3}$+1,求A.

查看答案和解析>>

同步练习册答案