精英家教网 > 高中数学 > 题目详情
已知分别是椭圆的左、右焦点,椭圆的离心率
(I)求椭圆的方程;(II)已知直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以线段为直径的圆恒过定点
(I);(II)详见试题解析.

试题分析:(I)由题意可知从而可得椭圆的方程;(II)由(I)知联立动直线和椭圆方程可得:再利用向量数量积的坐标公式及韦达定理通过计算证明结论.
试题解析:(I)解:由题意可知椭圆的方程为    4分
(II)证明:由(I)知联立动直线和椭圆方程可得:
故结论成立.             13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为原点,长轴长为,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于 两点(两点异于).求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

知椭圆的离心率为,定点,椭圆短轴的端点是,且.
(1)求椭圆的方程;
(2)设过点且斜率不为0的直线交椭圆两点.试问轴上是否存在异于的定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左焦点为,右焦点为

(Ⅰ)设直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求点M的轨迹的方程;
(Ⅱ)设为坐标原点,取曲线上不同于的点,以为直径作圆与相交另外一点,求该圆的面积最小时点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线轴右边,上每一点到点的距离减去它到轴距离的差都等于1.
(1)求曲线C的方程;
(2)若过点M的直线与曲线C有两个交点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2分别是双曲线的左、右焦点,P为双曲线右支上的任意一点且,则双曲线离心率的取值范围是(    )
A.(1,2]B.[2 +)C.(1,3]D.[3,+)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设集合A={(x,y)| },B={(x,y)|y=3x},则A∩B的子集的个数是(  )
A.4 B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的离心率为是其左右顶点,是椭圆上位于轴两侧的点(点轴上方),且四边形面积的最大值为4.

(1)求椭圆方程;
(2)设直线的斜率分别为,若,设△与△的面积分别为,求的最大值.

查看答案和解析>>

同步练习册答案