精英家教网 > 高中数学 > 题目详情
5.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,M,N分别是最大、最小值点,且$\overrightarrow{OM}•\overrightarrow{ON}$=0,则A=$\frac{π}{6}$.

分析 由题意写出点M、N的坐标,利用$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,即可求出A的值.

解答 解:由题意,M,N分别是这段图象的最高点和最低点,O为坐标原点,
∴$\overrightarrow{OM}$=($\frac{π}{12}$,A),$\overrightarrow{ON}$=($\frac{π}{3}$,-A),
则$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{π}{12}$×$\frac{π}{3}$-A2=0,
解得A=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查三角函数的图象与应用问题,也考查了平面向量数量积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知直线l的倾斜角为75°,则直线l的斜率是2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)是R上的偶函数,且在区间(-∞,0]上是减函数,令a=f(sin$\frac{2}{7}$π),b=f(cos$\frac{5}{7}$π),c=f(tan$\frac{5}{7}$π),则(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:数列{an}的前n项和为Sn,且2an-2n=Sn
(1)求证:数列{an-n•2n-1}是等比数列;
(2)求:数列{an}的通项公式;
(3)若数列{bn}中bn=$\frac{{({n^2}+19)•{2^n}}}{a_n}$,求:bn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow{m}$=(a+c,b)与向量$\overrightarrow{n}$=(a-c,b-a)互相垂直.
(1)求角C;
(2)求sinA+sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设等差数列{an}的前n项和为Sn,若a1=-40,a6+a10=-10,则S8=-180.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,等比数列{bn}满足b1=1,b4=8,n∈N*
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是(  )
A.161 cmB.162 cmC.163 cmD.164 cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=$\sqrt{2}$,AE、CF都与平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大小;
(2)在答题卡的图中画出四棱锥F-ABCD与四棱锥E-ABCD的公共部分,并计算此公共部分的体积.

查看答案和解析>>

同步练习册答案