精英家教网 > 高中数学 > 题目详情
15.在报名的5名男生和3名女生中,选取5人参加数学竞赛,要求男、女生都有,则不同的选取方式的种数为55.(结果用数值表示)

分析 根据题意,运用排除法分析,先在8名中选取5人,参加数学竞赛,由组合数公式可得其选法数目,再排除其中只有男生的情况,即可得答案.

解答 解:根据题意,报名的5名男生和3名女生,共8名学生,
在8名中选取5人,参加数学竞赛,有C85=56种;
其中只有男生C55=1种情况;
则男、女生都有的选取方式的种数为56-1=55种;
故答案为:55.

点评 本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.根据已知条件求方程:
(1)已知椭圆的两个焦点坐标分别是(-1,0),(1,0),并且经过点(1,-$\frac{3}{2}$),求它的标准方程;
(2)求与椭圆$\frac{{x}^{2}}{40}$+$\frac{{y}^{2}}{15}$=1有相同焦点,且离心率e=$\frac{5}{4}$的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥1”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设等比数列{an}的前n项和为Sn,若a1a2a3=64,且${S_{2n}}=5({a_1}+{a_3}+{a_5}+…+{a_{2n-1}})\;\;(n∈{N^*})$,则an=4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若复数z满足$z=\frac{3+4i}{1-2i}$(i为虚数单位),则$|{\overline{\;z\;}}|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=0.80.7,b=log23,c=log0.32,则a,b,c大小关系是(  )
A.c<b<aB.a<b<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=cos2x+2sinx在区间[-$\frac{π}{6}$,θ]上的最小值为-$\frac{1}{4}$,则θ的取值范围是[$-\frac{π}{6},\frac{7π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在三棱锥P-ABC中,BC=3,CA=4,AB=5,若三个侧面与底面ABC所成二面角均为60°,则三棱锥的体积是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax-1,其中a>0且a≠1
(1)求f(2)+f(-2)的值;
(2)求x<0时f(x)的解析式.

查看答案和解析>>

同步练习册答案