精英家教网 > 高中数学 > 题目详情

已知函数,其中.
(1)若,求曲线在点处的切线方程;
(2)求函数的极大值和极小值,若函数有三个零点,求的取值范围.

(1);(2).

解析试题分析:(1)本小题首先代入求得原函数的导数,然后求出切点坐标和切线的斜率,最后利用点斜式求得切线方程
(2)本小题首先求得原函数的导数,通过导数零点的分析得出原函数单调性,做成表格,求得函数的极大值和极小值,若要有三个零点,只需即可,解不等式即可.
试题解析:(Ⅰ)当时, ;

所以曲线在点处的切线方程为
                            6分
(Ⅱ)=.令,解得   8分
,则 .当变化时,的变化情况如下表:

x

0



f’(x)
+
0
-
0
+
f(x)
递增
极大值
递减
极小值
递增
则极大值为:
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上是增函数,求实数的取值范围;
(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,过曲线上的点的切线方程为.
(1)若时有极值,求的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,设函数的3个极值点为,且.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的函数,其中为常数.
(1)当是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求实数的取值范围;
(3)当时,若,在处取得最大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)讨论函数的单调性;
(2)若存在,使得成立,求满足上述条件的最大整数
(3)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的导数为,若函数的图象关于直线对称,且函数处取得极值.
(I)求实数的值;
(II)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)讨论的单调性;
(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;
(Ⅲ)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案