精英家教网 > 高中数学 > 题目详情

【题目】已知 :方程 有两个不等的正根; :方程 表示焦点在 轴上的双曲线.
(1)若 为真命题,求实数 的取值范围;
(2)若“ ”为真,“ ”为假,求实数 的取值范围

【答案】
(1)解:由已知方程 表示焦点在 轴上的双曲线,

所以 ,解得 ,即


(2)解:若方程 有两个不等的正根,

解得 ,即 .

为真,所以 至少有一个为真.

为假,所以 至少有一个为假.

因此, 两命题应一真一假,当 为真, 为假时, ,解得

为假, 为真时, ,解得 .

综上, .


【解析】(1)根据题意结合已知条件焦点在 y 轴上的双曲线,即可得出关于m的不等式组解出m的取值范围即可。(2)利用题中条件当命题p为真命题时,借助二次函数根的情况以及韦达定理求出m的取值范围,结合题意由“ p 或 q ”为真,“ p 且 q ”为假可得出p 或 q 为真,所以 p 、 q 至少有一个为真.又 为假,所以 至少有一个为假,按照这两种情况分情况讨论即可的出m的取值范围。
【考点精析】通过灵活运用命题的真假判断与应用,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为 + =1(a>b>0),双曲线 =1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4

(1)求椭圆C的方程;
(2)设F1 , F2分别为椭圆C的左,右焦点,过F2作直线l(与x轴不重合)交于椭圆于A,B两点,线段AB的中点为E,记直线F1E的斜率为k,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有六间不同的电脑室,每天晚上至少开放两间,欲求不同安排方案的种数,现有3位同学分别给出了下列三个结果:① ;②26-7;③ ,其中正确的结论是( )
A.仅有①
B.仅有②
C.②与③
D.仅有③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了解老人们的健康状况,政府从 老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能 自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行 统计,样本分布被制作成如图表:
(1)若采取分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发 放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下 老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100 元.试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 :直线 与直线 之间的距离不大于1,命题 :椭圆 与双曲线 有相同的焦点,则下列命题为真命题的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出s的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥 中, 平面 分别在线段 上, 的中点.

(1)证明: 平面
(2)若二面角 的大小为 ,求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 若函数 上有3个零点,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正四面体的“骰子”(四个面分别标有1,2,3,4四个数字),掷一次“骰子”三个侧面的数字的和为“点数”,连续抛掷“骰子”两次.
(1)设A为事件“两次掷‘骰子’的点数和为16”,求事件A发生的概率;
(2)设X为两次掷“骰子”的点数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案