精英家教网 > 高中数学 > 题目详情

设函数.
(1)当时,求函数的极大值;
(2)若函数的图象与函数的图象有三个不同的交点,求的取值范围;
(3)设,当时,求函数的单调减区间.

(1)5;(2);(3)①当时,函数的单调减区间为
②当时,函数的单调减区间为,
③当时,函数的单调减区间为,,

解析试题分析:(1)当时,函数是一个具体的三次函数,只须求出的导函数,并令它为零求得其根;然后列出的取值范围与的符号及单调性的变化情况表,由此表可求得函数的极大值;(2)函数的图象与函数的图象有三个不同的交点,等价于方程有三个不同的实数根,也等价于方程有三个不同的实数根,从而可转化为直线与函数有三个不同的交点,画草图可知必须且只需:,所以利用导数求出函数的极小值和极大值即可;(3)注意到函数的图象与函数的图象之间的关系:将函数在x轴上方的图象不变,而将x轴下方的图象沿x轴翻折到x轴上方即得函数的图象,由此可知要求函数的单调减区间,只须先求出函数的单调区间,并求出的所有零点,结合图象就可写出函数的单调减区间;注意分类讨论.
试题解析:(1)当时,由=0,得,    2分
列表如下:



-1

3



0

0


练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数),其导函数为.
(1)当时,求的单调区间;
(2)当时,,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于三次函数
定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;
定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。
己知,请回答下列问题:
(1)求函数的“拐点”的坐标
(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是(不要过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,抛物线轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为,其它的三个边角地块每单位面积价值元.
(1)求等待开垦土地的面积;
(2)如何确定点C的位置,才能使得整块土地总价值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当时,求的单调区间
(2)若上是递减的,求实数的取值范围; 
(3)是否存在实数,使的极大值为3?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的两个极值点.
(1)试确定常数的值;
(2)试判断是函数的极大值点还是极小值点,并求出相应极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,( 为常数,为自然对数的底).
(1)当时,求
(2)若时取得极小值,试确定的取值范围;
(3)在(2)的条件下,设由的极大值构成的函数为,将换元为,试判断曲线是否能与直线为确定的常数)相切,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数的最大值是  ▲   

查看答案和解析>>

同步练习册答案