精英家教网 > 高中数学 > 题目详情

求下列函数在x=x0处的导数.

(1)f(x)=cosx·sin2x+cos3x,x0=

(2)f(x)=,x0=2;

(3)f(x)=,x0=1.

(1)f′()=-(2)f′(2)=0(3)f′(1)=-


解析:

  (1)∵f′(x)=[cosx(sin2x+cos2x)]′

=(cosx)′=-sinx,∴f′()=-.

(2)∵f′(x)==

=,∴f′(2)=0.

(3)∵f′(x)=(x)′-x′+(lnx)′=-x-1+,

∴f′(1)=- .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)满足下列条件:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M.
(1)证明:函数f(x)=2x具有性质M,并求出对应的x0的值;
(2)已知函数h(x)=lg
ax2+1
具有性质M,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2
4+2b-b2
x
g(x)=-
1-(x-a)2
(a,b∈R).
(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)对满足(2)中的条件的整数对(a,b),奇函数h(x)的定义域和值域都是区间[-k,k],且x∈[-k,0]时,h(x)=f(x),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+x的定义域D 恰是不等式 f(-x)+f(x)≤2|x|的解集,其值域为A.函数 g(x)=x3-3tx+
1
2
t
的定义域为[0,1],值域为B.
(1)求f (x) 的定义域D和值域 A;
(2)(理) 试用函数单调性的定义解决下列问题:若存在实数x0∈(0,1),使得函数 g(x)=x3-3tx+
1
2
t
在[0,x0]上单调递减,在[x0,1]上单调递增,求实数t的取值范围并用t表示x0
(3)(理) 是否存在实数t,使得A⊆B成立?若存在,求实数t 的取值范围;若不存在,请说明理由.
(4)(文) 是否存在负实数t,使得A⊆B成立?若存在,求负实数t 的取值范围;若不存在,请说明理由.
(5)(文) 若函数g(x)=x3-3tx+
1
2
t
在定义域[0,1]上单调递减,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在D上的函数y=f(x)满足条件:存在实数a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常数);
②对于D内任意y0,当y0∉[a,b],总有f(y0)<C.
我们将满足上述两条件的函数f(x)称为“平顶型”函数,称C为“平顶高度”,称b-a为“平顶宽度”.根据上述定义,解决下列问题:
(1)函数f(x)=-|x+2|-|x-3|是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平顶型”函数,求出m,n的值.
(3)对于(2)中的函数f(x),若f(x)=kx在x∈[-2,+∞)上有两个不相等的根,求实数k的取值范围.

查看答案和解析>>

同步练习册答案