精英家教网 > 高中数学 > 题目详情

【题目】如图,在空间之间坐标系中,四棱锥的底面在平面上,其中点与坐标原点重合,点轴上,,顶点轴上,且.

1)求直线与平面所成角的大小;

2)设的中点,点上,且,求二面角的正弦值.

【答案】1;(2.

【解析】

1)列出的坐标,计算出平面的一个法向量,利用空间向量法计算出直线与平面所成角的正弦值,即可得出直线与平面所成角的大小;

2)求出点的坐标,计算出平面的法向量,利用空间向量法求出二面角的余弦值的绝对值,由此可得出二面角的正弦值.

因为四棱锥的底面在平面上,

其中点与坐标原点重合,点轴上,

顶点轴上,且

所以.

1

设平面的一个法向量为

,即,取,则,得.

所以.

所以直线与平面所成角的大小为

2)因为的中点,点上,且,所以.

设平面的一个法向量为

,即,取,则,得.

又平面的一个法向量为,所以.

所以二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线E1(a>0b>0)的右顶点为AO为坐标原点,MOA的中点,若以AM为直径的圆与E的渐近线相切,则双曲线E的离心率等于( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=8x的焦点,作倾斜角为45°的直线,则被抛物线截得的弦长为(  )

A. 8 B. 16 C. 32 D. 64

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)设,若对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆圆心为,过点且斜率为的直线与圆相交于不同的两点

)求的取值范围

)是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地举行水上运动会,如图,岸边有两点,,小船从点以千米/小时的速度沿方向匀速直线行驶,同一时刻运动员出发,经过小时与小船相遇.(水流速度忽略不计)

1)若,运动员从处出发游泳匀速直线追赶,为保证在1小时内(含1小时)能与小船相遇,试求运动员游泳速度的最小值;

2)若运动员先从处沿射线方向在岸边跑步匀速行进小时后,再游泳匀速直线追赶小船.已知运动员在岸边跑步的速度为4千米小时,在水中游泳的速度为2千米小时,试求小船在能与运动员相遇的条件下的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,底面.

1)求证:平面

2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,左顶点为,离心率为,点是椭圆上的动点,的面积的最大值为.

(1)求椭圆的方程;

(2)设经过点的直线与椭圆相交于不同的两点,线段的中垂线为.若直线与直线相交于点,与直线相交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线和⊙,过抛物线C上一点)做两条直线与⊙相切于两点,分别交抛物线于两点.

1)当的角平分线垂直轴时,求直线的斜率;

2)若直线轴上的截距为,求的最小值.

查看答案和解析>>

同步练习册答案