精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的顶点A(1,3),AB边上的中线CM所在直线方程为2x﹣3y+2=0,AC边上的高BH所在直线方程为2x+3y﹣9=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

【答案】
(1)解:由A(1,3)及AC边上的高BH所在的直线方程2x+3y﹣9=0

得AC所在直线方程为3x﹣2y+3=0

又AB边上的中线CM所在直线方程为2x﹣3y+2=0

得C(﹣1,0)


(2)解:设B(a,b),又A(1,3)M是AB的中点,则M(

由已知得 得B(3,1)

又C(﹣1,0)得直线BC的方程为x﹣4y+1=0


【解析】(1)先求直线AC的方程,然后求出C的坐标.(2)设出B的坐标,求出M代入直线方程为2x﹣3y+2=0,与直线为2x+3y﹣9=0.联立求出B的坐标然后可得直线BC的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y= (υ>0).
(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:

x

1

2

3

4

5

y

5

6

7

8

10

由资料可知y对x呈线性相关关系,且线性回归方程为 ,请估计使用年限为20年时,维修费用约为(
A.26.2
B.27
C.27.6
D.28.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆W: ,过原点O作直线l1交椭圆W于A,B两点,P为椭圆上异于A,B的动点,连接PA,PB,设直线PA,PB的斜率分别为k1 , k2(k1 , k2≠0),过O作直线PA,PB的平行线l2 , l3 , 分别交椭圆W于C,D和E,F.
(1)若A,B分别为椭圆W的左、右顶点,是否存在点P,使∠APB=90°?说明理由.
(2)求k1k2的值;
(3)求|CD|2+|EF|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直平行六面体ABCD﹣A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.

(1)求证:OC1∥平面AB1D1
(2)求证:平面AB1D1⊥平面ACC1A1
(3)求三棱锥A1﹣AB1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)= 是奇函数.
(1)确定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;
(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.

(1)求图中a的值,并估计日需求量的众数;
(2)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.
(ⅰ)将S表示为x的函数;
(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆M的方程为x2+y2﹣8x﹣2y+16=0,若直线kx﹣y+3=0上至少存在一点,使得以该点为圆心,半径为1的圆与圆M有公共点,则k的取值范围是(
A.(﹣∞, ]
B.[0,+∞)
C.[﹣ ,0]
D.(﹣∞, ]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和 ,其中n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,求数列{bn}的前n项和Tn
(Ⅲ)若对于任意正整数n,都有 ,求实数λ的最小值.

查看答案和解析>>

同步练习册答案