精英家教网 > 高中数学 > 题目详情

【题目】如图所示的是某池塘中的浮萍蔓延的面积与时间月)的关系有以下叙述:

①这个指数函数的底数是2;

②第5个月时,浮萍的面积就会超过

③浮萍从蔓延到需要经过1.5个月;

④浮萍每个月增加的面积都相等;

⑤若浮萍蔓延到所经过的时间分别为.其中正确的是

A. ①② B. ①②③④ C. ②③④⑤ D. ①②⑤

【答案】D

【解析】由函数图象可知,该函数过点(1,2),所以a=2,,故①正确;t=5,y=32>30,故②正确;t=2,y=4,,t=log212,因为log212-2-1.5>0,所以浮萍从蔓延到需要经过的时间超过1.5个月,故③错误;第一个月增加1,第二个月增加2,第三个月增加4,因此④错误;浮萍蔓延到所经过的时间分别为,,,所以,故⑤正确.因此正确的是①②⑤.

点晴:本题考查的是函数模型的应用。解决函数模型应用的解答题,要注意以下几点:①读懂实际背景,将实际问题转化为函数模型.②对涉及的相关公式,记忆要准确.③在求解的过程中计算要正确.另外需要熟练掌握求解方程、不等式、函数最值的方法,才能快速正确地求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (e是自然对数的底数),h(x)=1﹣x﹣xlnx.
(1)求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求h(x)的单调区间;
(3)设g(x)=xf′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,点E在PD上,且PE:ED=2:1.
(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形为平行四边形, .

(1)求证: 平面

(2)求到平面的距离;

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数= 满足定义域为的函数=是奇函数.

(1)确定函数的解析式;

(2)若对任意的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游乐园的摩天轮最高点距离地面108米,直径长是98米,均速旋转一圈需要18分钟.如果某人从摩天轮的最低点处登上摩天轮并开始计时,那么:

(1)当此人第四次距离地面米时用了多少分钟?

(2)当此人距离地面不低于米时可以看到游乐园的全貌,求摩天轮旋转一圈中有多少分钟可以看到游乐园的全貌?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a,a∈R
(1)当a=0时,求函数f(x)的极值;
(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1 , x2 , 且x1<x2 . (ⅰ)求a的取值范围;
(ⅱ)若不等式e1+λ<x1x 恒成立,求正实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在校运动会上,甲、乙、丙三位同学每人均从跳远,跳高,铅球,标枪四个项目中随机选一项参加比赛,假设三人选项目时互不影响,且每人选每一个项目时都是等可能的
(1)求仅有两人所选项目相同的概率;
(2)设X为甲、乙、丙三位同学中选跳远项目的人数,求X的分布列和数学期望E(X)

查看答案和解析>>

同步练习册答案