精英家教网 > 高中数学 > 题目详情

已知Sn为等差数列{an}的前n和,若a4=-48,a9=-33,
(1)求an的通项公式;
(2)当n为何值时,Sn最小?.

解:(1)设等差数列的公差为d,
由a4=-48,a9=-33,得到
②-①得:5d=15,解得:d=3,把d=3代入①,解得:a1=-57,
则an=-57+3(n-1)=3n-60;
(2)由(1)得:Sn==n2-n,
所以Sn是关于n的开口向上的抛物线,
当n=-==19.5时,Sn取得最小,又n是正整数,
则当n=19、20时,Sn最小.
分析:(1)设出等差数列的公差,由a4和a9的值,利用等差数列的通项公式列出关于a1和d的方程组,求出方程组的解得到a1和d的值,即可写出等差数列的通项公式;
(2)利用等差数列的前n项和公式表示出Sn,利用二次函数求最值的方法即可得到Sn最小时n的取值.
点评:本题要求学生熟练掌握等差数列的通项公式及前n项和公式.学生在求Sn最小值时注意n为正整数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n和,若a4=-48,a9=-33,
(1)求an的通项公式;
(2)当n为何值时,Sn最小?.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,a4=9,a9=-6,Sn=63,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,a1=-2012,
S2011
2011
-
S2009
2009
=2
,则S2012=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区二模)已知Sn为等差数列{an}的前n项和,且a3=S3=9
(Ⅰ)求{an}的通项公式;
(Ⅱ)若等比数列{bn}满足b1=a2,b4=S4,求{bn}的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,若a1=-2012,
S2010
2010
-
S2004
2004
=6
,则S2013等于(  )

查看答案和解析>>

同步练习册答案